Loading...
Search for: llc-resonant-converter
0.014 seconds

    Modeling and Control of LLC Resonant Converter Based on Theories of Hybrid Systems

    , M.Sc. Thesis Sharif University of Technology Barzkar, Ashkan (Author) ; Tahami, Farzad (Supervisor)
    Abstract
    In comparison to pulse width modulation (PWM) converters, the ability of soft switch-ing enables resonant converters to operate at high frequencies, as the result of which these converters enjoy high efficiency, high power density, and low electromagnetic interference (EMI). Among resonant tank topologies, the LLC resonant tank is a very desirable structure, as the LLC resonant converter can operate in boost mode and properly regulate the output voltage under light loads and despite large variations in the input voltage and/or the load. However, there are major modeling issues with resonant converters, since conventional modeling approaches cannot properly model fast dynamics of these... 

    A hybrid control approach for LLC resonant converter

    , Article 12th Power Electronics, Drive Systems, and Technologies Conference, PEDSTC 2021, 2 February 2021 through 4 February 2021 ; 2021 ; 9780738111971 (ISBN) Barzkar, A ; Tahami, F ; Barzkar, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    In this paper, a novel hybrid control approach is proposed to control the LLC resonant converter. Since the converter consists of both continuous variables and logical variables, it is intrinsically hybrid. Apart from that, because of fast dynamics of the converter and the fact that there is no closed form solution for discontinuous conduction modes (DCM), modeling and control of the LLC resonant converter is still a challenge. In the authors' previous work, a systematic model was proposed for the converter, the direct piecewise affine model. In this paper, an appropriate controller based on the proposed model is represented and the design procedure is discussed in details; the block diagram... 

    Optimizing the normalized dead-time and maximum switching frequency of a wide-adjustable-range LLC resonant converter

    , Article IEEE Transactions on Power Electronics ; Volume 26, Issue 2 , August , 2011 , Pages 462-472 ; 08858993 (ISSN) Beiranvand, R ; Rashidian, B ; Zolghadri, M. R ; Alavi, S. M. H ; Sharif University of Technology
    2011
    Abstract
    LLC resonant converter has been widely used in dcdc converters. In this paper, optimum dead-time and maximum switching frequency of a wide-adjustable-range LLC resonant converter are investigated for realizing the zero voltage switching (ZVS) operation even under the worst-case conditions. Analyses demonstrate that these parameters depend on the converter inductance ratio and ratio of the converter resonant capacitor and the effective capacitance appeared in parallel with the drainsources of the power MOSFETs. The necessary dead time for realizing the ZVS operation can be minimized by choosing the normalized maximum switching frequency, properly. Using the dead-time optimum value, soft... 

    Using LLC resonant converter for designing wide-range voltage source

    , Article IEEE Transactions on Industrial Electronics ; Volume 58, Issue 5 , 2011 , Pages 1746-1756 ; 02780046 (ISSN) Beiranvand, R ; Rashidian, B ; Zolghadri, M. R ; Alavi, S. M. H ; Sharif University of Technology
    Abstract
    LLC resonant converter with significant resonant inductance is proposed for designing an adjustable wide-range regulated voltage source. Large resonant inductance increases output voltage adjustment range and conversion efficiency, particularly at light loads. Soft switching is achieved for all power devices under all operating conditions by choosing the dead time and maximum switching frequency properly and operating in the converter's inductive region. Using a power-factor-correction (PFC) converter reduces the resonant converter's output voltage dependence to the variations of the main ac input voltage. Thus, the compensation of the load variations and the wide-range adjustment of the... 

    Optimum design of planar transformer for LLC resonant converter using metaheuristic method

    , Article 45th Annual Conference of the IEEE Industrial Electronics Society, IECON 2019, 14 October 2019 through 17 October 2019 ; Volume 2019-October , 2019 , Pages 6621-6626 ; 9781728148786 (ISBN) Nazerian, E ; Tahami, F ; Sharif University of Technology
    IEEE Computer Society  2019
    Abstract
    Isolated, high-density DC-DC converters play a crucial role in the power supply unit of information technology industries. By virtue of high efficiency and high power density, LLC resonant converters-among the rest of DC-DC converters-are suitable candidates for this application. The magnetic structure of this converter, however, is a bulky, dissipative part, which has a considerable portion of power loss. Improvement in the size and efficiency of the LLC transformer will lead to an overall enhancement of power density and efficiency of the converter. Nevertheless, the optimization of planar transformers for the LLC converter has not been studied enough. This paper proposes a... 

    The direct piece-wise affine modeling of llc resonant converter

    , Article 45th Annual Conference of the IEEE Industrial Electronics Society, IECON 2019, 14 October 2019 through 17 October 2019 ; Volume 2019-October , 2019 , Pages 2062-2067 ; 9781728148786 (ISBN) Barzkar, A ; Tahami, F ; Molla Ahmadian, H ; Sharif University of Technology
    IEEE Computer Society  2019
    Abstract
    Resonant converters are hard nonlinear systems which are comprised of both continuous and discontinuous nonlinearities. Many nonlinear modeling approaches lead to a very awkward, unsystematic stability analysis and controller design. Hence, stability analysis and stabilizing controller design of the popular LLC resonant converter still remain challenging as direct consequences of the absence of a "systematic modeling". In this paper, the LLC resonant converter is modeled in the form of Piece-Wise Affine (PWA) systems and a Direct Piece-Wise Affine (DPWA) model of the DC-DC LLC resonant converter is proposed. No dynamic is omitted in the modeling approach, and accordingly, the proposed... 

    A new high step-up interleaved LLC converter

    , Article 12th Power Electronics, Drive Systems, and Technologies Conference, PEDSTC 2021, 2 February 2021 through 4 February 2021 ; 2021 ; 9780738111971 (ISBN) Amani, D ; Beiranvand, R ; Zolghadri, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    In this study, a new LLC resonant converter for high-voltage high-power applications is introduced. The introduced power converter is a two-phase interleaved full-bridge based that uses a transformer with secondary and tertiary windings to obtain higher output voltage. Zero voltage switching (ZVS) at MOSFETs turn on and zero current switching (ZCS) for all the output diodes at turn off are achieved for a wide range of input voltage (100 V-200 V) and output power (200 W-1500 W) variations. Simulation results show a 95% peak efficiency. © 2021 IEEE  

    Common Mode Noise Reduction of LLC Resonant Converter with Planar Transformer for Electric Vehicle Applications

    , M.Sc. Thesis Sharif University of Technology Pashaee, Mohammad Reza (Author) ; Tahami, Farzad (Supervisor)
    Abstract
    converters in electric vehicles, it is necessary to reduce their dimensions and increase their efficiency. It is expected that in the near future wide band gap semiconductors will be used to achieve these goals. On the other hand, usage of planar transformers is necessary to achieve slim and compact converter designs in electric vehicles. Clearly, planar transformers offer a significant advantage in replacing bulky wired transformers in high frequency LLC resonant converters with WBG transistors. planar transformers also have several other advantages, including low flux leakage, modular structure, and low thermal resistance.However, in planar transformers, due to the proximity and large area... 

    A design procedure for optimizing the LLC resonant converter as a wide output range voltage source

    , Article IEEE Transactions on Power Electronics ; Volume 27, Issue 8 , 2012 , Pages 3749-3763 ; 08858993 (ISSN) Beiranvand, R ; Rashidian, B ; Zolghadri, M. R ; Alavi, S. M. H ; Sharif University of Technology
    2012
    Abstract
    LLC resonant converter is one of the most suitable circuit topologies that have been introduced for designing constant output voltage switched-mode power supplies. In this paper, a design procedure is introduced for using this converter as a wide output range voltage source. Unlike constant output voltage applications which need small converter inductance ratio and narrow switching frequency variations, for wide output range applications, large values of these parameters are needed simultaneously and should be optimized. Instead of minimizing the components stresses, leading to a great value of the inductance ratio, proper choice of the converter parameters resulting in a smaller inductance... 

    A Comprehensive Time-domain-based Optimization of a High-Frequency LLC-based Li-ion Battery Charger

    , Article 10th International Power Electronics, Drive Systems and Technologies Conference, PEDSTC 2019, 12 February 2019 through 14 February 2019 ; 2019 , Pages 415-420 ; 9781538692547 (ISBN) Karimi, S ; Tahami, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    The LLC resonant converter, as a promising solution for battery charger applications, has the ability to adjust its output voltage during Constant Current and Constant Voltage modes in the charging profile. However, its operation mode changes as switching frequency changes. Therefore, for efficiency-oriented optimizations in battery charger applications, the one-pointed efficiency is not an appropriate objective. To this end, in this paper, a multi-pointed averaged efficiency is considered for optimization along with the transformer volume. Another factor of a proper design for a wide output range LLC is the converter peak voltage gain that is calculated based on an accurate method. The... 

    Designing an adjustable wide range regulated current source

    , Article IEEE Transactions on Power Electronics ; Volume 25, Issue 1 , 2010 , Pages 197-208 ; 08858993 (ISSN) Beiranvand, R ; Rashidian, B ; Zolghadri, M. R ; Alavi, S. M. H ; Sharif University of Technology
    Abstract
    LLC resonant converter has been used widely as dc-dc converter for achieving constant dc voltage. In this paper, an LLC resonant converter, by adding an inductance to its conventional topology and considering the rectifying stage stray inductances, is proposed for an adjustable wide range regulated current source (20-200 A dc) for using as ion implanter's filament power supply. The additional inductor increases output current adjustment range and efficiency, especially at light loads. Transformer's leakage inductances and rectifying stage stray inductances have been considered. Because of these inductances, the rectifier stage always works in continuous conduction mode, and its conduction... 

    Wide adjustable range LLC resonant converter's maximum switching frequency for realizing the ZVS operation

    , Article Proceedings - 2010 18th Iranian Conference on Electrical Engineering, ICEE 2010, 11 May 2010 through 13 May 2010 ; 2010 , Pages 745-752 ; 9781424467600 (ISBN) Beiranvand, R ; Rashidian, B ; Zolghadri, M. R ; Alavi, M. H ; Sharif University of Technology
    Abstract
    In this paper, the FHA and a simple TDA approaches have been used to derive the normalized maximum switching frequency of wide adjustable range LLC resonant converter for realizing the ZVS operation even under the worst-case conditions. By accounting the resonant current higher harmonics, more accurate expressions are derived. These analyses demonstrate that the normalized maximum switching frequency depends on the dead-time and the converter inductance ratio. It also depends on the ratio of the converter resonant capacitor and the effective capacitance appeared in parallel with the power MOSFETs drain-sources. The simulated and experimental results are in good agreement with the derived...