Loading...
Search for: loading-efficiency
0.011 seconds

    Curcumin-loaded amine-functionalized mesoporous silica nanoparticles inhibit α-synuclein fibrillation and reduce its cytotoxicity-associated effects

    , Article Langmuir ; Volume 32, Issue 50 , 2016 , Pages 13394-13402 ; 07437463 (ISSN) Taebnia, N ; Morshedi, D ; Yaghmaei, S ; Aliakbari, F ; Rahimi, F ; Arpanaei, A ; Sharif University of Technology
    American Chemical Society  2016
    Abstract
    This study aimed to develop a drug carrier based on amine-functionalized mesoporous silica nanoparticles (AAS-MSNPs) for a poorly water-soluble drug, curcumin (CUR), and to study its effects on α-synuclein (α-Syn) fibrillation and cytotoxicity. Here, we show that AAS-MSNPs possess high values of loading efficiency and capacity (33.5% and 0.45 mg drug/mg MSNPs, respectively) for CUR. It is also revealed that α-Syn species interact strongly with the CUR-loaded AAS-MSNPs, leading to a significant inhibition of the fibrillation process. Furthermore, these samples reduce the toxic effects of CUR. However, drug-loaded AAS-MSNPs do not affect the cytotoxic properties of the formed fibrils... 

    Synthesis of folate-modified, polyethylene glycol-functionalized gold nanoparticles for targeted drug delivery

    , Article Journal of Dispersion Science and Technology ; Volume 31, Issue 4 , 2010 , Pages 492-500 ; 01932691 (ISSN) Asadishad, B ; Vosoughi, M ; Alamzadeh, I ; Tavakoli, A ; Sharif University of Technology
    Abstract
    The chemical synthesis and in vitro drug delivery response of folate-modified, polyethylene glycol-functionalized gold nanoparticles were studied. Lysine-capped gold nanoparticles were first prepared. Subsequently, the widely used anticancer agent doxorubicin (DOX) was successfully attached to the surface of folate-modified, polyethylene glycol-functionalized gold nanoparticles. Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM) were used to confirm the functionalization and conjugation steps in the chemical synthesis. The DOX-loading efficiency determined by UV-vis spectrometer was 80%. Drug release experiments displayed a controlled-release behavior... 

    Dual-sensitive hydrogel nanoparticles based on conjugated thermoresponsive copolymers and protein filaments for triggerable drug delivery

    , Article ACS Applied Materials and Interfaces ; Volume 10, Issue 23 , 17 May , 2018 , Pages 19336-19346 ; 19448244 (ISSN) Ghaffari, R ; Eslahi, N ; Tamjid, E ; Simchi, A ; Sharif University of Technology
    American Chemical Society  2018
    Abstract
    In this study, novel hydrogel nanoparticles with dual triggerable release properties based on fibrous structural proteins (keratin) and thermoresponsive copolymers (Pluronic) are introduced. Nanoparticles were used for curcumin delivery as effective and safe anticancer agents, the hydrophobicity of which has limited their clinical applications. A drug was loaded into hydrogel nanoparticles by a single-step nanoprecipitation method. The drug-loaded nanoparticles had an average diameter of 165 and 66 nm at 25 and 37 °C, respectively. It was shown that the drug loading efficiency could be enhanced through crosslinking of the disulfide bonds in keratin. Crosslinking provided a targeted release... 

    Drug loading onto ion-exchange microspheres: Modeling study and experimental verification

    , Article Biomaterials ; Volume 27, Issue 19 , 2006 , Pages 3652-3662 ; 01429612 (ISSN) Abdekhodaie, M. J ; Wu, X. Y ; Sharif University of Technology
    2006
    Abstract
    A new mathematical model was developed and an exact analytical solution without approximations of previous work was derived for the description of the kinetics and equilibrium characteristics of drug loading from a finite external solution onto ion-exchange microspheres. The influence of important parameters pertinent to material properties and loading conditions on the kinetics, efficiency, and equilibrium of drug loading was analyzed using the developed model and equations. The numerical results showed that the rate of drug loading increased with increasing initial drug concentration in the solution or with the relative volume of the external solution and the microsphere. The maximum... 

    Fabrication and evaluation of controlled release of doxorubicin loaded UiO-66-NH2 metal organic frameworks

    , Article International Journal of Engineering, Transactions B: Applications ; Volume 34, Issue 8 , 2021 , Pages 1874-1881 ; 1728144X (ISSN) Rakhshani, N ; Hassanzadeh Nemati, N ; Ramezani Saadatabadi, A ; Sadrnezhaad, S. K ; Sharif University of Technology
    Materials and Energy Research Center  2021
    Abstract
    The metal-organic frameworks (MOFs) due to their large specific surface area and high biocompatibility are suitable as carriers for drug delivery systems (DDSs). In the present study, doxorubicin (DOX) as an anticancer drug was loaded into UiO-66-NH2 MOFs to decrease the adverse side effects of pristine DOX use and to increase its efficiency through the controlled release of DOX from MOFs. The MOFs were synthesized via microwave heating method and characterized using X-ray diffraction, scanning electron microscopy, and Brunauer-Emmett- Teller analysis. The drug loading efficiency, drug release profiles from synthesized MOFs and pharmacokinetic studies were investigated. The biocompatibility... 

    Scalable fabrication of tunable titanium nanotubes via sonoelectrochemical process for biomedical applications

    , Article Ultrasonics Sonochemistry ; Volume 64 , June , 2020 Mansoorianfar, M ; Khataee, A ; Riahi, Z ; Shahin, K ; Asadnia, M ; Razmjou, A ; Hojjati Najafabadi, A ; Mei, C ; Orooji, Y ; Li, D ; Sharif University of Technology
    Elsevier B. V  2020
    Abstract
    Titanium does not react well with the human tissues and due to its bio-inert nature the surface modification has yet to be well-studied. In this study, the sonoelectrochemical process has been carried out to generate TiO2 nanotube arrays on implantable Ti 6–4. All the prepared nanotubes fill with the vancomycin by immersion and electrophoresis method. Drug-releasing properties, antibacterial behavior, protein adsorption and cell attachment of drug-modified nanotubes are examined by UV–vis, flow cytometry, modified disc diffusion, BSA adsorption, and FESEM, respectively. The most uniform morphology, appropriate drug release, cell viability behavior and antibacterial properties can be achieved... 

    Thermo- and pH-sensitive dendrosomes as bi-phase drug delivery systems

    , Article Nanomedicine: Nanotechnology, Biology, and Medicine ; Volume 9, Issue 8 , 2013 , Pages 1203-1213 ; 15499634 (ISSN) Adeli, M ; Fard, A. K ; Abedi, F ; Chegeni, B. K ; Bani, F ; Sharif University of Technology
    2013
    Abstract
    Fully supramolecular dendrosomes (FSD) as bi-phase drug delivery systems are reported in this work. For preparation of FSD, amphiphilic linear-dendritic supramolecular systems (ALDSS) have been synthesized by host-guest interactions between hyperbranched polyglycerol having β-cyclodextrin core and bi-chain polycaprolactone (BPCL) with a fluorescine focal point. Self-assembly of ALDSS in aqueous solutions led to FSD. They were able to encapsulate paclitaxel with a high loading capacity. The dendrosome-based drug delivery systems were highly sensitive to pH and temperature. They were stable at 20-37. °C and pH7-8, but dissociated and released drug at temperatures lower than 20. °C or higher... 

    Simultaneous controlled release of 5-FU, DOX and PTX from chitosan/PLA/5-FU/g-C3N4-DOX/g-C3N4-PTX triaxial nanofibers for breast cancer treatment in vitro

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 179 , 2019 , Pages 495-504 ; 09277765 (ISSN) Habibi Jouybari, M ; Hosseini, S ; Mahboobnia, K ; Boloursaz, L. A ; Moradi, M ; Irani, M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In the present study, the tri-layer nanofibers were synthesized via triaxial electrospinning process to control the sustained delivery of Doxorubicin (DOX), Paclitaxel (PTX) and 5- fluorouracil (5-FU) anticancer drugs from nanofibers. The 5-FU molecules were incorporated into the core solution (chitosan/polyvinyl alcohol (CS/PVA)) to fabricate the CS/PVA/5-FU inner layer of nanofibers. The intermediate layer was prepared from poly(lactic acid)/chitosan (PLA/CS) nanofibers. The DOX and PTX molecules were initially loaded into the g-C3N4 nanosheets and following were incorporated into the PLA/CS solution to fabricate the outer layer of nanofibers. The synthesized nanosheets and nanofibers were...