Loading...
Search for: loc
0.006 seconds

    Rotary magnetohydrodynamic micropump based on slug trapping valve

    , Article Journal of Microelectromechanical Systems ; Volume 20, Issue 1 , December , 2011 , Pages 260-269 ; 10577157 (ISSN) Moghadam, M. E ; Shafii, M. B ; Sharif University of Technology
    2011
    Abstract
    A novel rotary magnetohydrodynamic (MHD) (RMHD) micropump is presented in this paper in order to both benefit exclusive advantages from the MHD micropumps and eliminate the current obstacles in their implementation. Lorentz force, which is the actuation mechanism in RMHD, is used to propel a mercury slug in a circular microchannel in order to suck the working fluid from the inlet and pump it to the outlet. This idea is integrated with a valve which prevents the working fluid from passing through, while allowing the mercury slug to pass, during each pumping loop. The performance of a fabricated RMHD is evaluated, considering parameters such as pressure difference, running duration, electric... 

    Newtonian and generalized Newtonian reacting flows in serpentine microchannels: pressure driven and centrifugal microfluidics

    , Article Journal of Non-Newtonian Fluid Mechanics ; Volume 251 , January , 2018 , Pages 88-96 ; 03770257 (ISSN) Madadelahi, M ; Shamloo, A ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    This paper presents a comprehensive 3D numerical simulation of reacting flows in micro scale dimension through centrifugal, or Lab-On-a-CD (LOCD), and pressure-driven, or Lab-On-a-Chip (LOC) devices. Three different serpentine channel configurations (rectangular, triangular and sinusoidal) are investigated. In these configurations, two chemical species enter from two inlets and according to an irreversible chemical reaction, start yielding other species. Both Newtonian and generalized Newtonian fluids are considered in the simulations and the results are compared for both LOC and LOCD devices. Besides, the effects of different parameters such as the aspect ratio of channels’ cross section,...