Loading...
Search for: localized-deformations
0.007 seconds

    Simulation and experimental analyses of dynamic strain aging of a supersaturated age hardenable aluminum alloy

    , Article Materials Science and Engineering A ; Volume 585 , 2013 , Pages 165-173 ; 09215093 (ISSN) Anjabin, N ; Karimi Taheri, A ; Kim, H. S ; Sharif University of Technology
    2013
    Abstract
    In this paper, dynamic strain aging (DSA) behavior in a temperature range of (25-235°C) and strain rate range of (10-4-5×10-2s-1) was investigated using a supersaturated age hardenable aluminum alloy. It was found that two mechanisms consisted of pinning of solute atoms to mobile dislocations and dynamic precipitation, were responsible for DSA in the testing conditions. The effects of both mechanisms on the macroscopic flow curve were studied using experimental and improved physically based material modeling approaches. It was shown that both phenomena lead to a negative strain rate hardening in the alloy. Dynamic precipitation acting at high temperature results in considerable work... 

    Comparison of the Weldability of AA6061-T6 Joint under Different Friction Stir Welding Conditions

    , Article Journal of Materials Engineering and Performance ; Volume 30, Issue 2 , 2021 , Pages 1110-1127 ; 10599495 (ISSN) Abdollahzadeh, A ; Bagheri, B ; Abassi, M ; Kokabi, A. H ; Ostovari Moghaddam, A ; Sharif University of Technology
    Springer  2021
    Abstract
    In this work, similar butt joints of AA6061-T6 alloy prepared by underwater friction stir welding (UWFSW) and friction stir vibration welding (FSVW) processes were examined. The characteristics of joints were compared with the joints obtained by conventional friction stir welding (CFSW). The different kinds of microstructural modifications that occurred during CFSW, FSVW, and UWFSW processes were analyzed. The results are employed to analyze the different behaviors in strength, ductility, weldability, and hardness of the joints in different processes at different traverse speeds, rotational speeds, and vibration frequency. It was found that mechanical vibration decreases the grain size in... 

    Comparison of the weldability of AA6061-T6 joint under different friction stir welding conditions

    , Article Journal of Materials Engineering and Performance ; Volume 30, Issue 2 , 2021 , Pages 1110-1127 ; 10599495 (ISSN) Abdollahzadeh, A ; Bagheri, B ; Abassi, M ; Kokabi, A. H ; Ostovari Moghaddam, A ; Sharif University of Technology
    Springer  2021
    Abstract
    In this work, similar butt joints of AA6061-T6 alloy prepared by underwater friction stir welding (UWFSW) and friction stir vibration welding (FSVW) processes were examined. The characteristics of joints were compared with the joints obtained by conventional friction stir welding (CFSW). The different kinds of microstructural modifications that occurred during CFSW, FSVW, and UWFSW processes were analyzed. The results are employed to analyze the different behaviors in strength, ductility, weldability, and hardness of the joints in different processes at different traverse speeds, rotational speeds, and vibration frequency. It was found that mechanical vibration decreases the grain size in... 

    Effects of crystal orientation on the tensile and shear deformation of nickel-silicon interfaces: A molecular dynamics simulation

    , Article Materials Science and Engineering A ; Volume 543 , 2012 , Pages 217-223 ; 09215093 (ISSN) Amini, H ; Simchi, A ; Kokabi, A. H ; Sharif University of Technology
    2012
    Abstract
    Atomistic simulation was used to study the deformation and fracture mechanisms of Ni-Si interfaces under tensile and shear loads dependent on the crystal structure of interface zone. Modified embedded atom method (MEAM) potential was utilized for molecular dynamics (MD) modeling. The simulation includes analysis of common neighbors, coordination number, least-square atomic local strain, and radial distribution function. The profound effect of interface crystallography on the tensile and shear deformation is shown. The highest tensile strength is obtained for interfaces with high plane density due to lowest atomic disorder while under shear loading planes with low density exhibit a high local...