Loading...
Search for:
locally-linear-embedding
0.011 seconds
K/K-nearest neighborhood criterion for improvement of locally linear embedding
, Article 13th International Conference on Computer Analysis of Images and Patterns, CAIP 2009, Munster, 2 September 2009 through 4 September 2009 ; Volume 5702 LNCS , 2009 , Pages 808-815 ; 03029743 (ISSN); 3642037666 (ISBN); 9783642037665 (ISBN) ; Abrishami Moghaddam, H ; Babaie Zadeh, M ; Sharif University of Technology
2009
Abstract
Spectral manifold learning techniques have recently found extensive applications in machine vision. The common strategy of spectral algorithms for manifold learning is exploiting the local relationships in a symmetric adjacency graph, which is typically constructed using k -nearest neighborhood (k-NN) criterion. In this paper, with our focus on locally linear embedding as a powerful and well-known spectral technique, shortcomings of k-NN for construction of the adjacency graph are first illustrated, and then a new criterion, namely k/K-nearest neighborhood (k/K-NN) is introduced to overcome these drawbacks. The proposed criterion involves finding the sparsest representation of each sample in...
PSSDL: Probabilistic semi-supervised dictionary learning
, Article Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) ; Volume 8190 , Issue PART 3 , 2013 , Pages 192-207 ; 03029743 (ISSN) ; 9783642409936 (ISBN) ; Zarghami, A ; Zolfaghari, M ; Baghshah, M. S ; Sharif University of Technology
2013
Abstract
While recent supervised dictionary learning methods have attained promising results on the classification tasks, their performance depends on the availability of the large labeled datasets. However, in many real world applications, accessing to sufficient labeled data may be expensive and/or time consuming, but its relatively easy to acquire a large amount of unlabeled data. In this paper, we propose a probabilistic framework for discriminative dictionary learning which uses both the labeled and unlabeled data. Experimental results demonstrate that the performance of the proposed method is significantly better than the state of the art dictionary based classification methods
K/K-Nearest Neighborhood criterion for improving locally linear embedding
, Article Proceedings of the 2009 6th International Conference on Computer Graphics, Imaging and Visualization: New Advances and Trends, CGIV2009, 11 August 2009 through 14 August 2009, Tianjin ; 2009 , Pages 392-397 ; 9780769537894 (ISBN) ; Moghaddam, H. A ; Babaie Zadeh, M ; Sharif University of Technology
Abstract
Spectral manifold learning techniques have recently found extensive applications in machine vision. The common strategy of spectral algorithms for manifold learning is exploiting the local relationships in a symmetric adjacency graph, which is typically constructed using k-nearest neighborhood (k-NN) criterion. In this paper, with our focus on locally linear embedding as a powerful and well-known spectral technique, shortcomings of k-NN for construction of the adjacency graph are first illustrated, and then a new criterion, namely k/K-nearest neighborhood (k/K-NN) is introduced to overcome these drawbacks. The proposed criterion involves finding the sparsest representation of each sample in...
Dimension reduction of optical remote sensing images via minimum change rate deviation method
, Article IEEE Transactions on Geoscience and Remote Sensing ; Volume 48, Issue 1 , 2010 , Pages 198-206 ; 01962892 (ISSN) ; Kasaei, S ; Sharif University of Technology
2010
Abstract
This paper introduces a new dimension reduction (DR) method, called minimum change rate deviation (MCRD), which is applicable to the DR of remote sensing images. As the main shortcoming of the well-known principal component analysis (PCA) method is that it does not consider the spatial relation among image points, our proposed approach takes into account the spatial relation among neighboring image pixels while preserving all useful properties of PCA. These include uncorrelatedness property in resulted components and the decrease of error with the increasing of the number of selected components. Our proposed method can be considered as a generalization of PCA and, under certain conditions,...
Spatiotemporal registration and fusion of transthoracic echocardiography and volumetric coronary artery tree
, Article International Journal of Computer Assisted Radiology and Surgery ; Volume 16, Issue 9 , 2021 , Pages 1493-1505 ; 18616410 (ISSN) ; Behnam, H ; Fatemizadeh, E ; Faghihi Langroudi, T ; Bayat, F ; Sharif University of Technology
Springer Science and Business Media Deutschland GmbH
2021
Abstract
Purpose: Cardiac multimodal image fusion can offer an image with various types of information in a single image. Many coronary stenosis, which are anatomically clear, are not functionally significant. The treatment of such kind of stenosis can cause irreversible effects on the patient. Thus, choosing the best treatment planning depend on anatomical and functional information is very beneficial. Methods: An algorithm for the fusion of coronary computed tomography angiography (CCTA) as an anatomical and transthoracic echocardiography (TTE) as a functional modality is presented. CCTA and TTE are temporally registered using manifold learning. A pattern search optimization algorithm, using...