Loading...
Search for: locating-error
0.01 seconds

    Extract Non-Line-of-Sight state of base stations and error mitigation technique for wireless localization in micro-cell networks

    , Article Computer Communications ; Volume 35, Issue 7 , 2012 , Pages 885-893 ; 01403664 (ISSN) Dehghani, H. L ; Golmohammadi, S ; Shadi, K ; Sharif University of Technology
    2012
    Abstract
    Non Line of Sight (NLOS) propagation is a challenging issue which the performance of network based wireless localization is limited by errors primarily caused by NLOS corruption. NLOS is inherently a dominant source of errors in metropolitan area wireless networks, like cellular one, so in this paper we discuss our proposed algorithm within cellular network terminology. This paper contributes two novel algorithms. The first one is to extract the NLOS state of base station (BS) and the second one is a correction algorithm to enhance the measurements accuracy. Our proposed algorithm discuses a novel localization technique to estimate true mobile terminal (MT) location from a set of possibly... 

    Manufacturing error compensation based on cutting tool location correction in machining processes

    , Article International Journal of Computer Integrated Manufacturing ; Vol. 27, Issue. 11 , 29 Oct , 2014 , pp. 969-978 ; ISSN: 0951192X Khodaygan, S ; Sharif University of Technology
    Abstract
    Inaccuracies in workpiece location lead to errors in position and orientation of machined features on the workpiece, and strongly affect the assemblability and the quality of the product. The accurate positioning of workpiece on a fixture is influenced by rigid body displacements and rotations of the workpiece due to several errors (e.g. geometric radial and position errors in locators and manufacturing tolerances of the workpiece). In this paper, an efficient approach is introduced for analysis and compensation errors in the workpiece-fixture-cutting tool system. A new mathematical formulation of workpiece-fixture modelling is proposed to establish the relationship between the locating... 

    An efficient method for workpiece locating error prediction in machining process

    , Article SAE 2016 World Congress and Exhibition, 12 April 2016 through 14 April 2016 ; Volume 2016-April , April , 2016 Khodaygan, S ; Sharif University of Technology
    SAE International 
    Abstract
    Fixtures play a key role in locating workpieces to manufacture high quality products within many processes of the product lifecycle. Inaccuracies in workpiece location lead to errors in position and orientation of machined features on the workpiece, and strongly affect the assemblability and the final quality of the product. The accurate positioning of workpiece on a fixture is influenced by rigid body displacements and rotations of the workpiece. In this paper, a systematic approach is introduced to investigate the located workpiece position errors. A new mathematical formulation of fixture locators modeling is proposed to establish the relationship between the workpiece position error and... 

    Statistical error analysis for dimensional control in automotive body assembly process

    , Article ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010, 12 July 2010 through 14 July 2010 ; Volume 3 , 2010 , Pages 329-334 ; 9780791849170 (ISBN) Khodaygan, S ; Movahhedy, M. R ; Mirabolghasemi, A ; Zendehbad, M ; Moradi, H ; Sharif University of Technology
    2010
    Abstract
    In mechanical assemblies, the performance, quality, cost and assemblability of the product are significantly affected by the geometric errors of the parts. This paper develops the statistical error analysis approach for dimensional control in automotive body multi-station assembly process. In this method, the homogeneous transformation matrices are used to describe the location and orientation of part and assembly features and the small homogeneous transformation matrices are used to model the errors. In this approach, the effective errors in automotive body assembly process are classified in three categories: manufacturing errors (dimensional and geometric tolerances), locating errors... 

    A method for optimal reduction of locating error with the minimum adjustments of locators based on the geometric capability ratio of process

    , Article International Journal of Advanced Manufacturing Technology ; 2017 , Pages 1-16 ; 02683768 (ISSN) Khodaygan, S ; Sharif University of Technology
    Abstract
    Imprecise productions with low quality are produced by the incapable manufacturing processes. Prediction of the process capability in the design stage plays a key role to improve the product quality. In this paper, a new method is proposed to optimally reduce the locating error by allocating the minimum adjustments of locators. To quantify the precision of the manufacturing process, a proper tool that is called the geometric capability ratio (GCR) of the manufacturing process is introduced. First, based on a part fixture model, the relationship between the locating error and its sources is developed. Then, using the proposed geometric capability ratio, the manufacturing process capability is... 

    A method for optimal reduction of locating error with the minimum adjustments of locators based on the geometric capability ratio of process

    , Article International Journal of Advanced Manufacturing Technology ; Volume 94, Issue 9-12 , February , 2018 , Pages 3963-3978 ; 02683768 (ISSN) Khodaygan, S ; Sharif University of Technology
    Springer London  2018
    Abstract
    Imprecise productions with low quality are produced by the incapable manufacturing processes. Prediction of the process capability in the design stage plays a key role to improve the product quality. In this paper, a new method is proposed to optimally reduce the locating error by allocating the minimum adjustments of locators. To quantify the precision of the manufacturing process, a proper tool that is called the geometric capability ratio (GCR) of the manufacturing process is introduced. First, based on a part fixture model, the relationship between the locating error and its sources is developed. Then, using the proposed geometric capability ratio, the manufacturing process capability is...