Loading...
Search for: locomotives
0.013 seconds
Total 92 records

    Generating the Activation Patterns of the Leg Muscles during Human Locomotion Using the Central Pattern Generators as a Control Structure

    , Article Iranian Journal of Science and Technology - Transactions of Mechanical Engineering ; Volume 40, Issue 2 , 2016 , Pages 87-94 ; 22286187 (ISSN) Haghpanah, S. A ; Farahmand, F ; Zohoor, H ; Razeghi, M ; Sharif University of Technology
    Shiraz University 
    Abstract
    The central pattern generators have been considered as a method to simplify the control of the complex rhythmic motions, e.g., walking, by the central nervous system. In this study, a control structure was designed to control the soleus and tibialis anterior muscles in a complete gait cycle. The activation patterns of the muscles were measured experimentally and used as the reference signals of a tracking problem. The hip angle and ground reaction force were also used as a feedforward. The feedback from the Golgi tendon acted as a regulator of muscle activity. The controller was applied to two gait trials. The results indicated that the designed controller was capable of tracking the... 

    Dealing with biped locomotion as a dynamic object manipulation problem: Manipulating of body using legs

    , Article ASME International Mechanical Engineering Congress and Exposition, IMECE 2007, Seattle, WA, 11 November 2007 through 15 November 2007 ; Volume 9 PART B , 2008 , Pages 1209-1216 ; 0791843033 (ISBN); 9780791843031 (ISBN) Beigzadeh, B ; Meghdari, A ; Beigzadeh, Y ; Sharif University of Technology
    2008
    Abstract
    In this paper, we try to show that it is possible to deal with biped locomotion as a dynamic object manipulation problem. We show that during locomotion, a biped locomotion can be seen as manipulating of upper part of biped robot using a leg, which now plays the role of a manipulator. So the whole locomotion process can be seen as a dynamic manipulation of an object (upper part of a biped robot) using a numerous series of manipulators each of which placed in a proper place where the object tends to land, so it catches the object and throws it to the next point which another manipulator waits for catching it. The authors in the previous works have explored the problem of dynamic manipulation... 

    Muscle-driven forward dynamics simulation for the study of differences in muscle function during stair ascent and descent

    , Article Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine ; October 1, 2009 Vol.223: 863-874 Selk Ghafari, A. (Ali) ; Meghdari, A ; Vossoughi, G. R ; Sharif University of Technology
    Abstract
    The main scope of this study is to analyse muscle-driven forward dynamics simulation of stair locomotion to understand the functional differences of individual muscles during the movement. A static optimization was employed to minimize a performance criterion based on the muscle energy consumption to resolve muscle redundancy during forward dynamics simulation. The proposed method was employed to simulate a musculoskeletal system with ten degrees of freedom in the sagittal plane and containing 18 Hill-type musculotendon actuators per leg. Simulation results illustrated that simulated joint kinematics closely tracked experimental quantities with root-mean-squared errors less than 1 degree. In... 

    Four suggested plans of underwater Robo-snake

    , Article World Academy of Science, Engineering and Technology ; Volume 38 , 2009 , Pages 1094-1099 ; 2010376X (ISSN) Babaee, S ; Sharifazadeh, H ; Sharif University of Technology
    2009
    Abstract
    Throughout this paper four locomotion mechanisms have been presented for underwater robo-sankes. In this respect; initially, two methods of locomotion including traveling and standing wave have been examined. Next, applications of these methods are described. Ultimately, assessing and comparison of those mechanisms have been studied and the best plan is determined. © 2009 WASET.ORG  

    Kinematical and dynamic analysis of biped robots' locomotion using dynamic object manipulation approach

    , Article 8th Biennial ASME Conference on Engineering Systems Design and Analysis, ESDA2006, Torino, 4 July 2006 through 7 July 2006 ; Volume 2006 , 2006 ; 0791837793 (ISBN); 9780791837795 (ISBN) Beigzadeh, B ; Nili Ahmadabadi, M ; Meghdari, A ; Sharif University of Technology
    2006
    Abstract
    In this paper, we try to interpret "Duality of Dynamic Locomotion and Dynamic Object Manipulation". Since our main goal in this paper is to offer the duality concept and to validate it with a case study, we deal with the problem in a simple and abstract system. As a case study, we describe the duality between the problem of 2D dynamic object manipulation of a sphere using two planar manipulators and 2D dynamic locomotion of lower part of a biped robot. Having obtained the equations of dynamic object manipulation, we change the boundary conditions of the problem in such a way that both radius and mass of sphere object tend to infinity. Simultaneously, both of size and mass of manipulators'... 

    Rigid vs compliant contact: an experimental study on biped walking

    , Article Multibody System Dynamics ; Volume 45, Issue 4 , 2019 , Pages 379-401 ; 13845640 (ISSN) Khadiv, M ; Moosavian, S. A. A ; Yousefi-Koma, A ; Sadedel, M ; Ehsani Seresht, A ; Mansouri, S ; Sharif University of Technology
    Springer Netherlands  2019
    Abstract
    Contact modeling plays a central role in motion planning, simulation and control of legged robots, as legged locomotion is realized through contact. The two prevailing approaches to model the contact consider rigid and compliant premise at interaction ports. Contrary to the dynamics model of legged systems with rigid contact (without impact) which is straightforward to develop, there is no consensus among researchers to employ a standard compliant contact model. Our main goal in this paper is to study the dynamics model structure of bipedal walking systems with rigid contact and a novel compliant contact model, and to present experimental validation of both models. For the model with rigid... 

    Design and Fabrication of a Fish Robot

    , M.Sc. Thesis Sharif University of Technology Hosseini, Saeed (Author) ; Meghdari, Ali (Supervisor) ; Selk Ghafari, Ali (Supervisor)
    Abstract
    In this research a robotic fish was designed and fabricated. For this propose different types of manufactured robotic fish were investigated and this model was developed and made with a one-piece flexible tail with an actuator that creates lateral movement through cable strings attached to the tail. Proposed mechanism has a simple, low cost structure that facilitates the control of the robotic fish movement. To control this robotic fish, a four-channel radio controller with 40 kHz frequency, was used. Swimming mode of this robotic fish is categorized in Subcarangiform swimming mode which is faster and has better maneuverability compared to its counterparts. It should be noted that the... 

    Musculoskeletal Modeling and Analysis of Gait Pattern of Paraplegic Patients

    , Ph.D. Dissertation Sharif University of Technology Arab Baniasad, Mina (Author) ; Farahmand, Farzam (Supervisor) ; Zohoor, Hassan (Supervisor)
    Abstract
    Spinal cord injury (SCI) is one of the most important causes of disability in the youth and costs enormous expenses for the government. Most SCI subjects use wheelchair as their main way of locomotion while standing and walking can benefit them in various aspects. The role of lower extremity muscles has been investigated in paraplegic gait with active orthoses or in partial weight support condition. However, due to the large expenses of active orthoses, their application have been limited to clinical trials and yet most SCI individuals use traditional AFO and KAFO for walking. The role and significance of trunk and upper extremity muscles (TUEM) has been investigated only in balance... 

    Dynamic analysis of an a-shaped piezo-actuated walking microrobot

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 12 November 2010 through 18 November 2010, Vancouver, BC ; Volume 10 , 2010 , Pages 161-170 ; 9780791844472 (ISBN) Kamali Eigoli, A ; Vossoughi, G ; Sharif University of Technology
    2010
    Abstract
    In this paper, a novel, A-shaped microrobot with nanometric resolution for precision positioning applications is addressed. The locomotion concept of the mechanism is founded on the "friction drive principle". To achieve the translational motion, a stack piezoelectric actuates the microrobot near its natural frequency. The dynamic modeling of the mechanism is based on the assumptions of linear behavior of piezo stack actuator and Coulomb friction model at contact points. The suitability of three simple, friction-based locomotion modes for implementation on the proposed device is presented. Influences of different friction coefficients on the behavior of the microrobot, with respect to... 

    Application of advanced SVC incase of reactive power and unbalancy compensation of a locomotive

    , Article 2006 IEEE International Conference on Industrial Technology, ICIT, Mumbai, 15 December 2006 through 17 December 2006 ; 2006 , Pages 1897-1902 ; 1424407265 (ISBN); 9781424407262 (ISBN) Saghaleini, M ; Hekmati, A ; Rezaei, M. R ; Afsharnia, S ; Sharif University of Technology
    2006
    Abstract
    This paper introduces advanced SVC. Advanced SVC has been simulated with regard to reactive power and unbalancy compensation. Then, a new space has been chosen for state equation based on combination of d-q and real space to positive - negative. By decoupling of active, reactive powers and positive, negative sequences and using decoupling circuit, the facility of each sequence control, by control circuit will be provided independently. After advanced SVC modeling, the load - which is electrification railway system - will be simulated. So a sample of electric locomotive in Iran has been investigated and simulated. By using the load model, the advanced SVC has been used for compensation of... 

    Numerical Investigation of Eel Movement

    , M.Sc. Thesis Sharif University of Technology Mirzaei Donchali, Ghader (Author) ; Abbaspour, Majid (Supervisor)
    Abstract
    In this work, we use computational fluid dynamic simulation tools for investigation two dimensional of eel movement. Firstly, the numerical study of smooth particle hydrodynamics was applied for determination drag coefficient and lift coefficient of undulation movement eel body. The initial mesh was manual. So, the effective parameters of eel movement were investigated. The smooth particle hydrodynamic method was not use, because of saving on time. Therefore, fluent software was used. UDF were added to the fluent software, which it can be move the boundary layer of mesh with eel movement. The dynamic mesh tools of fluent software were used. Initial shape had a curvature and utilized for... 

    Robotic Modeling of Paraplegic Locomotion to Improve the Gait Efficiency Using Modified Motion Pattern and Orthotics Design

    , M.Sc. Thesis Sharif University of Technology Abdolshah, Saeed (Author) ; Farahmand, Farzam (Supervisor)
    Abstract
    Walking on legs using orthosis for spinal cord injury patients has many advantages and decreases the physiological and psychological problems comparing with wheelchair application, however high energy consumption and early exhaustion of patients are disadvantages of orthosis usage. The most important group of orthosis for spinal cord injury patients is RGO (Reciprocating Gait Orhtosis) which a reciprocating cable mechanism links two hip joints motion. So swinging of mobile leg gets easier and stability of patient in standing and walking step increases. Regarding to existent reports about high energy consumption in walking by orthosis, this project has been fulfilled to design an improved... 

    Active control of a passive bipedal walking robot

    , Article International Journal of Dynamics and Control ; Volume 5, Issue 3 , 2017 , Pages 733-740 ; 2195268X (ISSN) Ebrahimi, A ; Heydari, M ; Alasty, A ; Sharif University of Technology
    Abstract
    A passive bipedal walking robot can descend down a small slope without any exertion of external force and only by using the gravity force. By exerting a proper energy to a passive biped robot, its walking speed can be controlled and also it can be forced to walk on flat planes and ascending slopes. In this paper, the proper energy is applied to the robot in three different methods: applying a proper moment to the robot joints, applying a proper moment to the robot’s stance leg, and applying a proper movement to the robot’s upper body. It is found that the first method is not practical, but the second and third methods enhance the stability and speed regulation of the robot. Additionally, the... 

    Design and Implementatioan of a Locomotion mode Recognition Algorithm for Powered Lower-Limb Prosthesis

    , M.Sc. Thesis Sharif University of Technology Shahmoradi, Sina (Author) ; Bagheri Shouraki, Saeed (Supervisor)
    Abstract
    Control of powered lower limb prostheses has a locomotion mode- ependent structure which demands a pattern recognizer that can classify the current locomotion mode and also detect transitions between them in an appropriate time. In the way to achieve this goal, this project presents a locomotion mode recognition system to classify daily locomotion modes consist of level- walking, stair climbing, slope walking, standing and sitting using low-cost mechanical sensors. Since these signals have a quasi-periodic nature, using sequential pattern recognition tools, such as Hidden Markov Model(HMM) improves the recognition performance,because they use sequences of information to make a decision. On... 

    Locomotion modes of a novel piezo-driven microrobot: Analytical modeling and performance evaluation

    , Article Mechanism and Machine Theory ; Volume 52 , 2012 , Pages 248-266 ; 0094114X (ISSN) Eigoli, A. K ; Vossoughi, G. R ; Sharif University of Technology
    2012
    Abstract
    This paper presents a novel, sliding, A-shaped microrobot with nanometric resolution for precision positioning applications. The microrobot is actuated near its natural frequency using a piezoelectric stack actuator to produce translational motion. The dynamic modeling of the mechanism is based on the assumptions of the linear piezoelectric behavior and the Coulomb friction model. Using this model the required condition for generating net motion is found. The suitability of three simple, friction-based locomotion modes for implementation on the proposed device is addressed. Influences of some important configuration parameters on the behavior of the microrobot, based on defined criteria, are... 

    How local slopes stabilize passive bipedal locomotion?

    , Article Mechanism and Machine Theory ; Volume 100 , 2016 , Pages 63-82 ; 0094114X (ISSN) Tehrani Safa, A ; Mohammadi, S ; Hajmiri, S. E ; Naraghi, M ; Alasty, A ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    By employing a few simple models of passive dynamic walking mechanism, we have shown the possibility of extending the boundaries of the maximum stable speed of these autonomous robots merely by changing their terrain. The replaced terrain consists of a series of parallel local slopes and is recognized as a general form of a ramp-stair surface. Although here, the mechanism of stabilization of the unstable locomotion patterns is not clearly known, the technique is quite simple and works effectively. The merit to the method over other strategies, could be described in two separate aspects: First, it is still completely passive; so we do not need any external energy to control the robot. Second,... 

    New robust control method applied to the locomotion of a 5-link biped robot

    , Article Robotica ; 2019 ; 02635747 (ISSN) Mehdi Kakaei, M ; Salarieh, H ; Sharif University of Technology
    Cambridge University Press  2019
    Abstract
    This paper proposes a new design of robust control combining feedback linearization, backstepping, and sliding mode control called FLBS applied to the locomotion of five-link biped robot. Due to the underactuated robot's model, the system has a hybrid nature, while the FLBS control can provide a stabilized walking movement even with the existence of large disturbances and uncertainties by implementing smooth chatter-free signals. Stability of the method is proven using the Lyapunov theorem based on the hybrid zero dynamics and Poincaré map. The simulations show the controller performance such as robustness and chatter-free response in the presence of uncertainty and disturbance. © 2020... 

    New robust control method applied to the locomotion of a 5-link biped robot

    , Article Robotica ; 2019 ; 02635747 (ISSN) Mehdi Kakaei, M ; Salarieh, H ; Sharif University of Technology
    Cambridge University Press  2019
    Abstract
    This paper proposes a new design of robust control combining feedback linearization, backstepping, and sliding mode control called FLBS applied to the locomotion of five-link biped robot. Due to the underactuated robot's model, the system has a hybrid nature, while the FLBS control can provide a stabilized walking movement even with the existence of large disturbances and uncertainties by implementing smooth chatter-free signals. Stability of the method is proven using the Lyapunov theorem based on the hybrid zero dynamics and Poincaré map. The simulations show the controller performance such as robustness and chatter-free response in the presence of uncertainty and disturbance. © 2020... 

    New robust control method applied to the locomotion of a 5-link biped robot

    , Article Robotica ; Volume 38, Issue 11 , January , 2020 , Pages 2023-2038 Kakaei, M. M ; Salarieh, H ; Sharif University of Technology
    Cambridge University Press  2020
    Abstract
    This paper proposes a new design of robust control combining feedback linearization, backstepping, and sliding mode control called FLBS applied to the locomotion of five-link biped robot. Due to the underactuated robot's model, the system has a hybrid nature, while the FLBS control can provide a stabilized walking movement even with the existence of large disturbances and uncertainties by implementing smooth chatter-free signals. Stability of the method is proven using the Lyapunov theorem based on the hybrid zero dynamics and Poincaré map. The simulations show the controller performance such as robustness and chatter-free response in the presence of uncertainty and disturbance. Copyright ©... 

    Controlling a Walking Humanoid Robot Using Intelligent Control

    , M.Sc. Thesis Sharif University of Technology Hosseini, Reza (Author) ; Sadati, Hossein (Supervisor)
    Abstract
    Humanoid robots are robots that are similar in appearance and performance to humans. Designing and controlling a humanoid robot to perform such supposedly ordinary tasks as walking, running, writing, talking, driving, riding bikes, and the like is such a difficult task from the control point of view that it seems to be quite ambitious and inaccessible. In this thesis, the previous efforts of scientists and researchers are presented using different intelligent controllers. Additionally, the dynamic analysis of selective biped (seven-link biped robot) is illustrated. In this research, we present a method to control the walking of the biped robot while retaining stability. In this method the...