Loading...
Search for: long-bone-fractures
0.005 seconds

    The wide-open three-legged parallel robot for long-bone fracture reduction

    , Article Journal of Mechanisms and Robotics ; Volume 9, Issue 1 , 2017 ; 19424302 (ISSN) Abedinnasab, M. H ; Farahmand, F ; Gallardo Alvarado, J ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2017
    Abstract
    Robotic reduction of long bones is associated with the need for considerable force and high precision. To balance the accuracy, payload, and workspace, we have designed a new six degrees-offreedom three-legged wide-open robotic system for long-bone fracture reduction. Thanks to the low number of legs and their nonsymmetrical configuration, the mechanism enjoys a unique architecture with a frontally open half-plane. This facilitates positioning the leg inside the mechanism and provides a large workspace for surgical maneuvers, as shown and compared to the well-known Gough-Stewart platform. The experimental tests on a phantom reveal that the mechanism is well capable of applying the desired... 

    A 3-legged parallel robot for long bone fracture alignment

    , Article ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2017, 6 August 2017 through 9 August 2017 ; Volume 3 , 2017 ; 9780791858158 (ISBN) Abedinnasab, M. H ; Farahmand, F ; Gallardo Alvarado, J ; Computers and Information in Engineering Division; Design Engineering Division ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2017
    Abstract
    The reduction of long bone fractures is traditionally an invasive procedure with drawbacks of intense force, soft tissue damage, and, both, rotational and longitudinal malalignment. To combat these drawbacks, we applied a novel, wide open, threelegged, 6-DOF parallel robot, to the current surgical procedure. This platform will balance the accuracy, payload, and workspace for the surgeon, resulting in more efficient, successful surgeries. The experimental tests on a phantom reveal that the mechanism is well capable of applying the desired reduction steps against the large muscular payloads with high accuracy. © 2017 ASME  

    Pre-planning of intramedullary nailing procedures: A methodology for predicting the position of the distal hole

    , Article Medical Engineering and Physics ; Volume 74 , 2019 , Pages 172-179 ; 13504533 (ISSN) Mortazavi, J ; Farahmand, F ; Behzadipour, S ; Yeganeh, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Inserting the distal locking screws is a challenging step of the intramedullary nailing procedures due to the nail deformation that makes the proximally mounted targeting systems ineffective. A pre-planning methodology is proposed, based on an analytical model of the nail–bone construct, to predict the nail deformation during surgery using orthogonal preoperative radiographs. Each of the femoral shaft and the nail was modeled as a curved tubular Euler–Bernoulli beam. The unknown positions and forces of the nail–bone interaction were found using a systematic trial and error approach, which minimized the total strain energy of the system while satisfying the force and geometrical constraints....