Loading...
Search for: low-carbon-steel
0.008 seconds
Total 85 records

    A study on austenite decomposition during continuous cooling of a low carbon steel

    , Article Materials and Design ; Volume 25, Issue 8 , 2004 , Pages 673-679 ; 02613069 (ISSN) Serajzadeh, S ; Karimi Taheri, A ; Sharif University of Technology
    Elsevier Ltd  2004
    Abstract
    In this work, a model based on the finite element method and assumption of second order phase transformation has been developed to predict temperature history and austenite decomposition kinetics during continuous cooling of a low carbon steel. In order to accurately assess the temperature field and transformation rate the effects of various factors such as work hardening role on the kinetics of transformation, interconnection between austenite phase change and thermo-physical properties of the steel, and initial austenite grain size have been considered in the model. To verify the results of the modelling, time-temperature histories during cooling of a low carbon steel has been determined... 

    Serrated flow during warm forming of low carbon steels

    , Article Materials Letters ; Volume 57, Issue 29 , 2003 , Pages 4515-4519 ; 0167577X (ISSN) Serajzadeh, S ; Sharif University of Technology
    2003
    Abstract
    In the present paper, employing compression experiments for three grades of low carbon steel, the effects of deformation condition and chemical composition on the occurrence of dynamic strain ageing are studied. Also, based on the achieved results, the flow behavior of steels under warm deformation conditions is predicted for the employed steels. The results show that both chromium and niobium postpone the happening of serrated flow and shifts the serrated flow region to lower temperatures in comparison with low carbon steel, while the activation energy for commencing dynamic strain ageing increases. © 2003 Elsevier Science B.V. All rights reserved  

    Modelling the temperature distribution and microstructural changes during hot rod rolling of a low carbon steel

    , Article Journal of Materials Processing Technology ; Volume 125, Issue 126 , 2002 , Pages 89-96 ; 09240136 (ISSN) Serajzadeh, S ; Mirbagheri, H ; Karimi Taheri, A ; Sharif University of Technology
    2002
    Abstract
    This paper presents a mathematical model for predicting the temperature distribution and austenite microstructural changes during hot rolling of steel bars and rod. The model is based on the finite element method for evaluating the temperature distribution and Wusatowski approach to determine the strain field within the deformation zone. Also, by employing double and single hit hot compression experiments, the kinetics of dynamic and static recrystallization of a low carbon steel are determined to predict the flow stress as well as the phase changes in austenite range during and after the hot rolling process. To deal with the correlation between the metal flow and thermal behaviour and... 

    A study on strain ageing during and after warm rolling of a carbon steel

    , Article Materials Letters ; Volume 62, Issue 6-7 , 2008 , Pages 946-948 ; 0167577X (ISSN) Serajzadeh, S ; Akhgar, J. M ; Sharif University of Technology
    2008
    Abstract
    In this study, strain ageing during and after warm rolling of a carbon steel has been investigated. At the first step, the occurrence of serrated flow was studied by means of tensile tests at different temperatures and strain rates. In the next stage, warm rolling experiments were performed under different rolling conditions and then the samples were aged at the room temperature for a period of 3 months. For both aged and non-aged samples, tensile tests were employed to evaluate their mechanical properties. The results show that static strain ageing is possible to happen in the utilized ageing period and increases the yield stress of the aged steel. However, the samples that experience both... 

    Modelling the warm rolling of a low carbon steel

    , Article Materials Science and Engineering A ; Volume 371, Issue 1-2 , 2004 , Pages 318-323 ; 09215093 (ISSN) Serajzadeh, S ; Sharif University of Technology
    2004
    Abstract
    Dynamic strain ageing may occur during warm working of low carbon steels and causes significant changes in flow behaviour and microstructure of the deformed material. Therefore, for a proper designing of an industrial forming process performing under warm deformation conditions, the effect of dynamic strain aging should be taken into account. The aim of this investigation is to predict the velocity and the temperature fields within the rolling metal with regard to the dynamic strain aging. For this purpose, compression tests at various temperatures and strain rates have been conducted to evaluate dynamic strain aging in a low carbon steel. Then, by coupling the experimental results with a... 

    Multistage strain aging phenomenon of low-carbon steels with rolling pre-strain

    , Article Journal of Materials Research and Technology ; Volume 15 , 2021 , Pages 7136-7144 ; 22387854 (ISSN) Rizehvandy, S ; Sharif University of Technology
    Elsevier Editora Ltda  2021
    Abstract
    In this study, a multistage strain aging method that used rolling pre-strain (compression) was developed to study the effects of temperature, and inter-pass time on static strain aging behavior of low carbon steel. An increase in hardness and strength caused by work hardening due to the forming process and aging at every stage of aging that is calculated separately. To comparing the effects of multistage aging against typical strain aging, the samples were rolled and subjected to the aging process both exist in typical one-stage aging that setting a 20% rolling pre-strain and in multiple stages pre-strain by setting a 5% rolling ratio in four stages. The mechanical properties of aged samples... 

    Bimodal grain size and mechanical properties enhancement in low carbon steel by ultra-rapid annealing

    , Article Journal of Materials Research and Technology ; Volume 18 , 2022 , Pages 2363-2367 ; 22387854 (ISSN) Mostafaei, M. A ; Kazeminezhad, M ; Sharif University of Technology
    Elsevier Editora Ltda  2022
    Abstract
    Different heating rates of 200-1200 deg;C/s were utilized during ultra-rapid annealing (URA) up to the temperatures of 730 and 760 °C on the severely deformed low carbon steel. Higher hardness, strength and ductility achieved for the sample heated at 730 °C with 600 °C/s due to formation of bimodal grain size (BGS) microstructure than them for non-BGS samples. The BGS enhancement for the hardness, strength and ductility with respect to those of as received sample was 67%, 80% and 7%, respectively, and, with respect to those of severely deformed one was 16%, 44% and 24%, respectively. URA with the heating rate of 200 °C/s and 1000 °C/s leads to fully recrystallized and non-recrystallized... 

    The Effect of Electropulsing on the Mechanical Properties of Cold Rolled Low Carbon Steel

    , M.Sc. Thesis Sharif University of Technology Alaghmand Fard, Reza (Author) ; Kazeminezhad, Mohsen (Supervisor)
    Abstract
    In this research, low carbon steel rolled under 16%, 33% and 50% deformation and applied under electric pulses. Microstructure investigated by optical microscopy and scanning electron microscopy in order to observe grain size, precipitation size and distribution and hardness measured by Vicker's hardness test, after each electric pulse treatment. I order to investigate microstructure evolution as well as grain size, precipitates and hardness all the species with different deformation percentages applied under electric pulses with different total electric pulse duration, number of pulses and the off time between two successive pulses. To obtain required information about species with... 

    , M.Sc. Thesis Sharif University of Technology Khodabakhshi, Farzad (Author) ; Kazeminezhad, Mohsen (Supervisor) ; Kokabi, Amirhossein (Supervisor)
    Abstract
    Considering that automobile weigth reduction in industry is important, improvement the strength of low carbon steel sheets is important. These sheets can be supported the service condition in lower thicknesses. Bulk nano-structured materials have been mostly attracted in materials science due to their unique physical and mechanical properties. Severe plastic deformation (SPD) is one of the most efficient methods to produce ultra fine grained or nano-structured materials. Materials produced by SPD are of great importance because of (1) non-porous structure, (2) great mechanical properties such as high strength and toughness and (3) proper dimension for mechanical and physical testing. ... 

    Effect of Rapid Annealing on Microstructure and Mechanical Properties of Severely Deformed Low Carbon Steel

    , M.Sc. Thesis Sharif University of Technology Ghiabakloo, Hadi (Author) ; Kazeminezhad, Mohsen (Supervisor)
    Abstract
    A low-carbon steel, containing 0.05 C, 0.203 Mn and 0.0229 Si (all in wt%) rapidly annealed in temperature range 300 ºC - 900 ºC, after severe plastic deformation (SPD) by constrained groove pressing (CGP). Microstructure evolution was investigated by Scanning Electron and Optical Microscopy. Mechanical properties were evaluated by hardness measurements and Shear Punch Testing (SPT). The result showed a thermal stability at 300 ºC and 400 ºC, which recrystallization did not occurred in these temperatures up to 2 h holding time. By annealing at 500 ºC and 600 ºC, the onset of recrystallization observed after holding times of 10 min and 20 s, respectively. Predicting the kinetic of... 

    , M.Sc. Thesis Sharif University of Technology Hassan Beigee, Hamid Reza (Author) ; Ghorbani, Mohammad (Supervisor)
    Abstract
    Phosphating is one of the most procedures as a final surface treatment or pre-treatment (lubrication and Infrastructure color) is done on ferrous and nonferrous alloys. Phosphate coating on the wire drawing, increase speed of drwing, increase die life, increased resistance to abrasion caused by the friction reduction, reduced maintenance costs and improved surface appearance are combustible and conditions. The aim of this study was to evaluate the effects of variables such as temperature, pH bath, the coating bath components concentration on coating properties and optimize calcium zinc phosphate coating on steel wire, for better lubrication and decrease friction in the wire drawing process.... 

    , M.Sc. Thesis Sharif University of Technology Adibi, Behnam (Author) ; Karimi Taheri, Ali (Supervisor)
    Abstract
    This study was conducted in order to investigate the effect of difference in electrical resistivity between low carbon steel and austenitic stainless steel on the physical and mechanical properties and fracture mode of dissimilar resistance spot welds of these alloys. For this purpose, plastic deformation using constrained groove pressing combined with rolling applied to low carbon steel in three levels of 40%, 156% and 272%. Microstructural characterization, micro-hardness measurements and shear-tension test were performed. It was shown that by increasing the pre-strain in low carbon steel its electrical resistivity increases from 13.08 μΩ.cm to 19.5 μΩ.cm and because of reduction of... 

    An Investigation into the Effect of Prestrain Temperature on the Static
    Recrystallization of low Carbon Steel

    , M.Sc. Thesis Sharif University of Technology Akbari, Edris (Author) ; karimi Taheri, Ali (Supervisor)
    Abstract
    In this project the effect of rolling temperature on mechanical properties and microstructure evolution of a low carbon steel was studied. The steel was rolled up to a nominal strain of 67% at three different temperatures consisted of room, blue brittleness, and subzero temperature. Micreohardnessand tensile tests were used to characterize the recrystallization kinetics. Optical and scanning electron microscopic examinations were carried out to evaluate the mechanical, grain size, and the kinetics of static recrystallization by the Avrami equation. The results indicated that the volume fraction of static recrystallization increases with the increase in annealing period. The Avrami exponent... 

    On the influence of deformation rate and cooling media on the static strain aging of a warm-rolled low carbon steel

    , Article International Journal of Material Forming ; Volume 6, Issue 3 , February , 2013 , Pages 417-422 ; 19606206 (ISSN) Koohbor, B ; Ohadi, D ; Sharif University of Technology
    2013
    Abstract
    An investigation was performed on the static strain aging behavior of warm-rolled low carbon steel during a nearly 1-year aging period, from the view point concerning with influence of changing the deformation speed and cooling media. Mechanical response of the examined material during aging period was evaluated through variations occurred in strength and hardness of the warm-deformed steel. It was shown that changing the rolling speed as well as cooling rate, may result in the occurrence of different metallurgical phenomena, consequently altering the aging kinetics of the material. It was also found that by increasing rolling speed, an increase in the value of hardness and UTS takes place,... 

    The effect of constrained groove pressing on grain size, dislocation density and electrical resistivity of low carbon steel

    , Article Materials and Design ; Volume 32, Issue 6 , 2011 , Pages 3280-3286 ; 02641275 (ISSN) Khodabakhshi, F ; Kazeminezhad, M ; Sharif University of Technology
    Abstract
    In this research, constrained groove pressing (CGP) technique is used for imposing severe plastic deformation (SPD) on the low carbon steel sheets. Using transmission electron microscopy (TEM), X-ray diffraction (XRD) and optical microscopy, the microstructural characteristics of produced sheets are investigated. The results show that CGP process can effectively refine the coarse-grained structure to an ultrafine grain range. Dislocation densities of the ultrafine grained low carbon steel sheets are quantitatively calculated and it is found that the CGP can effectively enhance the dislocation density of the sheets. Measurements of their electrical resistivity values show that microstructure... 

    Simulation of austenite decomposition in continuous cooling conditions: a cellular automata-finite element modelling

    , Article Ironmaking and Steelmaking ; 2017 , Pages 1-9 ; 03019233 (ISSN) Monshat, H ; Serajzadeh, S ; Sharif University of Technology
    Abstract
    Transformation of austenite to ferrite under continuous cooling condition was investigated. The heat conduction problem was managed by finite element method while two-dimensional cellular automata modeling was simultaneously performed to predict the progress of austenite decomposition using a two-step algorithm to reduce surface-to-volume ratio. Continuous cooling experiments on low carbon steel were made and the ferrite structure was determined and compared with the simulation data. The predicted and the experimental results demonstrated an acceptable consistency and the activation energy for ferrite growth was determined as 171 kJ/mole. The rate of ferrite transformation increased under... 

    Simulation of austenite decomposition in continuous cooling conditions: a cellular automata-finite element modelling

    , Article Ironmaking and Steelmaking ; Volume 46, Issue 6 , 2019 , Pages 513-521 ; 03019233 (ISSN) Monshat, H ; Serajzadeh, S ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    Transformation of austenite to ferrite under continuous cooling condition was investigated. The heat conduction problem was managed by finite element method while two-dimensional cellular automata modeling was simultaneously performed to predict the progress of austenite decomposition using a two-step algorithm to reduce surface-to-volume ratio. Continuous cooling experiments on low carbon steel were made and the ferrite structure was determined and compared with the simulation data. The predicted and the experimental results demonstrated an acceptable consistency and the activation energy for ferrite growth was determined as 171 kJ/mole. The rate of ferrite transformation increased under... 

    Atomistic simulation of the effect of carbon content and carbon-rich region on irradiation response of α-Fe on picosecond timescale

    , Article Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms ; Volume 443 , 2019 , Pages 70-78 ; 0168583X (ISSN) Zamzamian, S. M ; Samadfam, M ; Feghhi, S. A ; Arjhangmehr, A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    α-Fe with low carbon content is a base material which is commonly used in manufacturing of Reactor Pressure Vessel (RPV) of commercial nuclear power plants. Carbon is generally diffused to α-Fe matrix to improve some of its mechanical properties. The presence of carbon may alter the irradiation response of the steel. In the current study, using molecular dynamics simulations, we have investigated the influence of carbon (∼in either dispersed form or carbon-rich region as chain) in the primary damage states of α-Fe low carbon steels. It is found that carbons in dispersed form have no significant effect on the self-interstitial atoms (SIAs) in α-Fe. While, carbon-rich (C-rich as... 

    Microstructural and mechanical evaluations of SAW by manufactured granular basic bonded Cr, Mo, and Cr–Mo active fluxes on ST37 low carbon steel

    , Article International Journal of Advanced Manufacturing Technology ; Volume 119, Issue 9-10 , 2022 , Pages 6335-6347 ; 02683768 (ISSN) Alishavandi, M ; Mohammadmirzaei, M ; Ebadi, M ; Kokabi, A. H ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Abstract: Bead-on-plate submerged arc welding was conducted on St37 steel by manufactured Cr, Mo, and Cr–Mo active basic fluxes produced via the unfused bonded method. The base metal heat-affected zone and weld metal (WM) microstructures were identified and characterized by optical microscopy and scanning electron microscopy. Furthermore, each element’s recovery rate (η) and slag factor (α) determine the amount of element transferred from flux into WM. Then, the ferrite morphologies volume fraction of WMs was measured. Moreover, the chemical analysis of slag and inclusions was evaluated by point scan energy-dispersive X-ray spectroscopy and extensively discussed. The number density and... 

    Insight into the corrosion inhibition of Biebersteinia multifida root extract for carbon steel in acidic medium

    , Article Science of the Total Environment ; Volume 836 , 2022 ; 00489697 (ISSN) Khayatkashani, M ; Soltani, N ; Tavakkoli, N ; Nejatian, A ; Ebrahimian, J ; Mahdi, M. A ; Salavati Niasari, M ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    In this project, the protective effect of Biebersteinia multifida root extract (BMRE) against corrosion of 1018 low carbon steel (1018LCS) in HCl solutions was appraised by assessing weight loss, electrochemical impedance spectroscopy (EIS), and polarization at 25 °C. The maximum inhibitory efficacy for the concentration of 1 g/l of the BMRE was 92.8% at 25 °C after 2 h and increased to 95.3% after 24 h of immersion. Polarization experiments have shown that the extract in acidic solutions can act as a mixed corrosion inhibitor. The corrosion inhibitory efficacy of BMRE decreased with increasing temperature, and at all temperature settings studied, the adsorption of BMRE molecules on 1018 LCS...