Search for: macrogol
0.007 seconds
Total 38 records

    Evaluation of bio-compatible poly(ethylene glycol)-based solid-phase microextraction fiber for in vivo pharmacokinetic studies of diazepam in dogs

    , Article Analyst ; Volume 132, Issue 7 , 2007 , Pages 672-678 ; 00032654 (ISSN) Es-Haghi, A ; Zhang, X ; Musteata, F. M ; Bagheri, H ; Pawliszyn, J ; Sharif University of Technology
    Royal Society of Chemistry  2007
    Solid-phase microextraction probes based on poly(ethylene glycol)/C18-bonded silica were used for in vivo monitoring of drugs from circulating blood of beagles, over a period of 8 h. After sampling, the extracted drugs were subsequently quantified by liquid chromatography coupled with tandem mass spectrometry. External calibrations in whole blood and phosphate-buffered saline were used to correlate the amount of analytes extracted in regard to the total and free concentrations in blood respectively. The probe provided sufficient sensitivity for the drugs in the blood matrix, while the need for drawing blood was eliminated. The limit of detections of the method from whole blood were 1.7, 1.4... 

    Modified Gadonanotubes as a promising novel MRI contrasting agent

    , Article DARU, Journal of Pharmaceutical Sciences ; Volume 21, Issue 1 , 2013 ; 15608115 (ISSN) Jahanbakhsh, R ; Atyabi, F ; Shanehsazzadeh, S ; Sobhani, Z ; Adeli, M ; Dinarvand, R ; Sharif University of Technology
    Background and purpose of the study. Carbon nanotubes (CNTs) are emerging drug and imaging carrier systems which show significant versatility. One of the extraordinary characteristics of CNTs as Magnetic Resonance Imaging (MRI) contrasting agent is the extremely large proton relaxivities when loaded with gadolinium ion (Gdn 3+) clusters. Methods. In this study equated Gdn 3+ clusters were loaded in the sidewall defects of oxidized multiwalled (MW) CNTs. The amount of loaded gadolinium ion into the MWCNTs was quantified by inductively coupled plasma (ICP) method. To improve water solubility and biocompatibility of the system, the complexes were functionalized using diamine-terminated... 

    Catalyst-Free and Green Synthesis of Some Novel Benzamide Derivatives

    , Article Journal of Heterocyclic Chemistry ; Volume 52, Issue 6 , November , 2015 , Pages 1848-1857 ; 0022152X (ISSN) Samani Ghaleh Taki, B ; Rostami, M ; Mirkhani, V ; Moghadam, M ; Mohammadpoor Baltork, I ; Tangestaninejad, S ; Jamali Moghadam, A ; Kia, R ; Sharif University of Technology
    HeteroCorporation  2015
    In the present work, a simple, green, rapid, and catalyst-free procedure for the synthesis of benzamide derivatives by ring opening of azlactones with diamines such as ethylene diamine and 1,3-propylenediamine is described. The present method offers several advantages such as short reaction times, easy work-up, and mild reaction conditions in the absence of catalyst and any toxic solvent and material. In addition, the structure obtained by X-ray crystallography was compared with the theoretical results obtained by density functional theory using the B3LYP functional and cc-pVDZ basis sets  

    The effect of protein corona on doxorubicin release from the magnetic mesoporous silica nanoparticles with polyethylene glycol coating

    , Article Journal of Nanoparticle Research ; Volume 17, Issue 4 , April , 2015 ; 13880764 (ISSN) Pourjavadi, A ; Tehrani, Z. M ; Mahmoudi, N ; Sharif University of Technology
    Kluwer Academic Publishers  2015
    In the present work, biocompatible superparamagnetic iron oxide nanoparticles coated by mesoporous silica were used as drug nanocarriers for doxorubicin (Dox; an anticancer drug) delivery. In biological media, the interaction of protein corona layer with the surface of nanoparticles is inevitable. For this reason, we studied the effect of protein corona on drug release from magnetic mesoporous silica nanoparticles (MMSNs) in human plasma medium. Besides, we used hydrophilic and biocompatible polymer, polyethylene glycol (PEG), to decrease protein corona effects. The results showed the increased Dox release from PEGylated MMSNs compared with bare MMSNs. This result indicated that the coating... 

    Controlled release of doxorubicin from electrospun PEO/chitosan/graphene oxide nanocomposite nanofibrous scaffolds

    , Article Materials Science and Engineering C ; Volume 48 , March , 2015 , Pages 384-390 ; 09284931 (ISSN) Ardeshirzadeh, B ; Aboutalebi Anaraki, N ; Irani, M ; Roshanfekr Rad, L ; Shamshiri, S ; Sharif University of Technology
    Elsevier Ltd  2015
    Polyethylene oxide (PEO)/chitosan (CS)/graphene oxide (GO) electrospun nanofibrous scaffolds were successfully developed via electrospinning process for controlled release of doxorubicin (DOX). The SEM analysis of nanofibrous scaffolds with different contents of GO (0.1, 0.2, 0.5 and 0.7 wt.%) indicated that the minimum diameter of nanofibers was found to be 85 nm for PEO/CS/GO 0.5% nanofibers. The π-π stacking interaction between DOX and GO with fine pores of nanofibrous scaffolds exhibited higher drug loading (98%) and controlled release of the DOX loaded PEO/CS/GO nanofibers. The results of DOX release from nanofibrous scaffolds at pH 5.3 and 7.4 indicated strong pH dependence. The... 

    Folate-conjugated pH-responsive nanocarrier designed for active tumor targeting and controlled release of gemcitabine

    , Article Pharmaceutical Research ; Volume 33, Issue 2 , 2016 , Pages 417-432 ; 07248741 (ISSN) Pourjavadi, A ; Mazaheri Tehrani, Z ; Abedin Moghanaki, A ; Sharif University of Technology
    Springer New York LLC 
    Purpose: The prime end of this study was to design a novel pH-sensitive as well as a PEGylated dendritic nanocarrier for both controllable and traceable gemcitabine delivery to cancerous cells. To accomplish this goal, we took advantage of a hybrid of nanoparticles including: mesoporous silica, graphene oxide and magnetite. Methods: The nanocarrier was prepared in a multi-step synthesis route. First, magnetite mesoporous silica was deposited on the graphene oxide matrix. Then, polyamidoamine dendrimers (up to generation 1.5) with pentaethylene hexamine end groups were grafted on the surface of the nanoparticles. In order to enhance the biostability, and as the next step, the nanocarrier was... 

    Biodegradable nanopolymers in cardiac tissue engineering: from concept towards nanomedicine

    , Article International Journal of Nanomedicine ; Volume 15 , 2020 , Pages 4205-4224 Mohammadi Nasr, S ; Rabiee, N ; Hajebi, S ; Ahmadi, S ; Fatahi, Y ; Hosseini, M ; Bagherzadeh, M ; Ghadiri, A. M ; Rabiee, M ; Jajarmi, V ; Webster, T. J ; Sharif University of Technology
    Dove Medical Press Ltd  2020
    Cardiovascular diseases are the number one cause of heart failure and death in the world, and the transplantation of the heart is an effective and viable choice for treatment despite presenting many disadvantages (most notably, transplant heart availability). To overcome this problem, cardiac tissue engineering is considered a promising approach by using implantable artificial blood vessels, injectable gels, and cardiac patches (to name a few) made from biodegradable polymers. Biodegradable polymers are classified into two main categories: natural and synthetic polymers. Natural biodegradable polymers have some distinct advantages such as biodegradability, abundant availability, and... 

    Polymeric nanoparticles for nasal drug delivery to the brain: relevance to alzheimer's disease

    , Article Advanced Therapeutics ; Volume 4, Issue 3 , 2021 ; 23663987 (ISSN) Rabiee, N ; Ahmadi, S ; Afshari, R ; Khalaji, S ; Rabiee, M ; Bagherzadeh, M ; Fatahi, Y ; Dinarvand, R ; Tahriri, M ; Tayebi, L ; Hamblin, M. R ; Webster, T. J ; Sharif University of Technology
    Blackwell Publishing Ltd  2021
    Currently, Alzheimer's disease (AD) accounts for more than half of all dementia cases. Although genetics, age, and environmental factors affect the disease, the cause of AD is not yet fully known. Various drugs have been proposed for the prevention and treatment of AD, but the delivery of these therapeutic agents to the brain is difficult. The blood–brain barrier prevents systemic drugs from accessing the central nervous system and designing a suitable system to overcome this barrier has attracted much attention. The intranasal pathway, given its proximity to the brain, provides a great opportunity for drug delivery. Understanding the physiological characteristics of the nose can be useful... 

    Synthesis and characterization of gold nanotube/nanowire-polyurethane composite based on castor oil and polyethylene glycol

    , Article Materials Science and Engineering C ; Vol. 42 , 2014 , pp. 341-349 ; ISSN: 09284931 Ganji, Y ; Kasra,M ; Salahshour Kordestani, S ; Bagheri Hariri, M ; Sharif University of Technology
    Gold nanotubes/nanowires (GNT/NW) were synthesized by using the template-assisted electrodeposition technique and mixed with castor oil-polyethylene glycol based polyurethane (PU) to fabricate porous composite scaffolds for biomedical application. 100 and 50 ppm of GNT/NW were used to synthesize composites. The composite scaffolds were characterized by Fourier transform infrared spectroscopy, dynamic mechanical thermal analysis, differential scanning calorimetry, and scanning electron microscopy. Cell attachment on polyurethane-GNT/NW composites was investigated using fat-derived mesenchymal stem cells. Addition of 50 or 100 ppm GNT/NW had significant effects on thermal, mechanical, and cell... 

    Magnetic pH-responsive nanocarrier with long spacer length and high colloidal stability for controlled delivery of doxorubicin

    , Article Colloids and Surfaces B: Biointerfaces ; Vol. 116 , April , 2014 , pp. 49-54 ; ISSN: 09277765 Pourjavadi, A ; Hosseini, S. H ; Alizadeh, M ; Bennett, C ; Sharif University of Technology
    A novel magnetic nanocarrier with long spacer length and high colloidal stability has been prepared for effective delivery of doxorubicin (DOX). First, poly(amidoamine) (PAMAM) dendrimer was grown up onto the surface of superparamagnetic iron oxide nanoparticles to increase the loading amount of amine groups. Then, terminal amine groups were functionalized by polyethylene glycol dimethylester to increase the spacer length. Then anticancer drug DOX was covalently attached onto the system by hydrazone bond to forms a pH-sensitive nanocarrier. This system is designed to combine the advantage of magnetic targeting, high drug loading capacity, and controlled release  

    Magnetic nanoparticles-loaded PLA/PEG microspheres as drug carriers

    , Article Journal of Biomedical Materials Research - Part A ; Vol. 103, issue. 5 , SEP , 2014 , p. 1893-1898 Frounchi, M ; Shamshiri, S ; Sharif University of Technology
    Surface-modified magnetite (Fe3O4) nanoparticles with an average size of 22 nm were prepared. The nanoparticles had a saturation magnetization of 50.7 emu g-1. Then magnetite and drug-loaded microspheres of poly (lactic acid)/poly (ethylene glycol) were prepared at various compositions. The microspheres were spherical in shape and had smooth surface. The diameter size of the microspheres ranged between about 0.2 and 4 μm. Doxorubicin hydrochloride for cancer treatment was the drug that loaded into the microspheres. The prepared microspheres were characterized by FTIR, XRD, VSM, SEM and drug-release measurements. It was found that the drug cumulative release percentage was proportional to... 

    Long-term investigation on the phase stability, magnetic behavior, toxicity, and MRI characteristics of superparamagnetic Fe/Fe-oxide core/shell nanoparticles

    , Article International Journal of Pharmaceutics ; Volume 439, Issue 1-2 , 2012 , Pages 28-40 ; 03785173 (ISSN) Masoudi, A ; Madaah Hosseini, H. R ; Seyed Reyhani, S. M ; Shokrgozar, M. A ; Oghabian, M. A ; Ahmadi, R ; Sharif University of Technology
    To efficiently enhance the contrast obtaining from magnetic resonance imaging (MRI), pharmaceutical grade colloidal dispersions of PEG coated iron-based nanoparticles were prepared and compared to conventional pure iron oxide contrast agent. In this study, we synthesized ∼14 nm iron nanoparticles via NaBH4 reduction of iron(III) chloride in an aqueous medium. The resulting nanoparticles were further oxidized by two different methods via (CH3)3NO oxygen transferring agent and exposure to oxygen flow. XRD and electron microscopy analyses confirmed the formation of a second layer on the surface of α-Fe core. As magnetic measurements and Mössbauer spectra of 4-months post prepared nanoparticles... 

    The effect of poly(ethylene glycol) coating on colloidal stability of superparamagnetic iron oxide nanoparticles as potential MRI contrast agent

    , Article International Journal of Pharmaceutics ; Volume 433, Issue 1-2 , 2012 , Pages 129-141 ; 03785173 (ISSN) Masoudi, A ; Madaah Hosseini, H. R ; Shokrgozar, M. A ; Ahmadi, R ; Oghabian, M. A ; Sharif University of Technology
    Superparamganetic iron oxide-based contrast agents in magnetic resonance imaging (MRI) have offered new possibility for early detection of lymph nodes and their metastases. According to important role of nanoparticle size in biodistribution, magnetite nanoparticles coated with different polyethylene glycol (PEG) concentrations up to 10/1 PEG/iron oxide weight ratio in an ex situ manner. To predict the PEG-coated nanoparticle behavior in biological media, such as blood stream or tissue, colloidal stability evaluation was performed to estimate the coating endurance in different conditions. Accordingly, optical absorbance measurements were conducted in solutions with different values of pH and... 

    Removal of chromium from aqueous solution using polyaniline - Poly ethylene glycol composite

    , Article Journal of Hazardous Materials ; Volume 184, Issue 1-3 , December , 2010 , Pages 248-254 ; 03043894 (ISSN) Riahi Samani, M ; Borghei, S. M ; Olad, A ; Chaichi, M. J ; Sharif University of Technology
    The adsorption of chromium compounds from solutions by a composite of polyaniline/poly ethylene glycol (PANi/PEG) was investigated in this study. Experiments were conducted in batch mode under various operational conditions including agitation time, solution pH, PANi/PEG dose and initial concentration of chromium salts. Results showed that concentration of PEG at synthesizing stage has a significant effect on the capacity of produced composite for removal of chromium. Morphologically, PANi/PEG composite is closely dependent on the concentration of PEG. Maximum removal of hexavalent chromium was experienced when 2. g/L of PEG was used in synthesis of PANi/PEG. Removal of hexavalent chromium... 

    Prediction of the partition coefficients of biomolecules in polymer-polymer aqueous two-phase systems using the artificial neural network model

    , Article Particulate Science and Technology ; Volume 28, Issue 1 , 2010 , Pages 67-73 ; 02726351 (ISSN) Pazuki, G. R ; Taghikhani, V ; Vossoughi, M ; Sharif University of Technology
    In this work, an artificial neural network model was used to obtain the partition coefficients of biomolecules in polymer-polymer aqueous two-phase systems. In the artificial neural network, the partition coefficient of a biomolecule depends on the difference between concentrations of poly (ethylene glycol), dextran in the top and bottom phases, temperature and molecular weights of poly (ethylene glycol), dextran, and the biomolecule. The network topology is optimized and the (6-1-1) architecture is found using optimization of an objective function with sequential quadratic programming (SQP) method for 450 experimental data points. The results obtained from the neural network of the... 

    The role of polyethylene glycol size in chemical spectra, cytotoxicity, and release of pegylated nanoliposomal cisplatin

    , Article Assay and Drug Development Technologies ; Volume 17, Issue 5 , 2019 , Pages 231-239 ; 1540658X (ISSN) Shirzad, M ; Jamehbozorgi, S ; Akbarzadeh, I ; Aghabozorg, H. R ; Amini, A ; Sharif University of Technology
    Mary Ann Liebert Inc  2019
    This study aimed to synthesize methoxy polyethylene glycol propionaldehyde (mPEG20,000-ALD) for the preparation of PEGylated nanoliposomal cisplatin. Nanocarriers such as liposomes are developed for a wide range of drug delivery systems. PEG with high molecular weight (Mw) is used to coat the liposomes. In this study, simulated Fourier transform infrared (FTIR) spectra of mPEG-ALD were obtained using density functional theory (DFT) calculations and then compared with actual FTIR spectrum of mPEG20,000-ALD (Mw = 20 kDa). We found that the intensity of C = O stretching vibration at 1,700 cm-1 related to the carbonyl functional group of mPEG20,000-ALD was very weak. The results of DFT... 

    Quantitative in vivo microsampling for pharmacokinetic studies based on an integrated solid-phase microextraction system

    , Article Analytical Chemistry ; Volume 79, Issue 12 , 2007 , Pages 4507-4513 ; 00032700 (ISSN) Zhang, X ; Eshaghi, A ; Musteata, F. M ; Ouyang, G ; Pawliszyn, J ; Sharif University of Technology
    An integrated microsampling approach based on solid-phase microextraction (SPME) was developed to provide a complete solution to highly efficient and accurate pharmacokinetic studies. The microsampling system included SPME probes that are made of poly(ethylene glycol) (PEG) and C18-bonded silica, a fast and efficient sampling strategy with accurate kinetic calibration, and a high-throughput desorption device based on a modified 96-well plate. The sampling system greatly improved the quantitative capability of SPME in two ways. First, the use of the C18-bonded silica/PEG fibers minimized the competition effect from analogues of the target analytes in a complicated sample matrix such as blood... 

    Sol-gel-based solid-phase microextraction and gas chromatography-mass spectrometry determination of dextromethorphan and dextrorphan in human plasma

    , Article Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences ; Volume 818, Issue 2 , 2005 , Pages 147-157 ; 15700232 (ISSN) Bagheri, H ; Eshaghi, A ; Rouini, M. R ; Sharif University of Technology
    A novel solid-phase microextraction (SPME) method was developed for isolation of dextromethorphan (DM) and its main metabolite dextrorphan (DP) from human plasma followed by GC-MS determination. Three different polymers, poly(dimethylsiloxane) (PDMS), poly(ethylenepropyleneglycol) monobutyl ether (Ucon) and polyethylene glycol (PEG) were synthesized as coated fibers using sol-gel methodologies. DP was converted to its acetyl-derivative prior to extraction and subsequent determination. The porosity of coated fibers was examined by SEM technique. Effects of different parameters such as fiber coating type, extraction mode, agitation method, sample volume, extraction time, and desorption... 

    An in vitro study of bare and poly(ethylene glycol)-co-fumarate-coated superparamagnetic iron oxide nanoparticles: A new toxicity identification procedure

    , Article Nanotechnology ; Volume 20, Issue 22 , 2009 ; 09574484 (ISSN) Mahmoudi, M ; Simchi, A ; Imani, M ; Milani, A. S ; Stroeve, P ; Sharif University of Technology
    As the use of superparamagnetic iron oxide nanoparticles (SPION) in biomedical applications increases (e.g. for targeting drug delivery and imaging), patients are likely to be exposed to products containing SPION. Despite their high biomedical importance, toxicity data for SPION are limited to date. The aim of this study is to investigate the cytotoxicity of SPION and its ability to change cell medium components. Bare and poly(ethylene glycol)-co-fumarate (PEGF)-coated SPION with narrow size distributions were synthesized. The particles were prepared by co-precipitation using ferric and ferrous salts with a molar Fe3+/Fe2+ ratio of 2. Dulbecco's modified Eagle's medium (DMEM) and primary... 

    Electrospun polyamide-polyethylene glycol nanofibers for headspace solid-phase microextration

    , Article Journal of Separation Science ; Vol. 37, issue. 14 , 2014 , pp. 1880-1886 ; ISSN: 16159306 Bagheri, H ; Najarzadekan, H ; Roostaie, A ; Sharif University of Technology
    A solution of polyamide (PA) containing polyethylene glycol (PEG) as a side low-molecular-weight polymer was electrospun. After synthesizing the PA-PEG nanofibers, the constituent was subsequently removed (modified PA) and confirmed by Fourier transform infrared spectroscopy. The scanning electron microscopy images showed an average diameter of 640 and 148 nm for PA and PA-PEG coatings, respectively, while the latter coating structure was more homogeneous and porous. The extraction efficiencies of PA, PA-PEG, and the modified PA fiber coatings were assayed by headspace solid-phase microextraction of a number of chlorophenols from real water samples followed by their determination by gas...