Loading...
Search for: magnetic-circuit
0.006 seconds

    Comprehensive design of a toroidally-wound limited angle torque motor

    , Article International Review of Electrical Engineering ; Volume 6, Issue 1 , 2011 , Pages 198-206 ; 18276660 (ISSN) Zarandi, R. N ; Kelk, H. M ; Toorani, F ; Farahmandzad, H ; Sharif University of Technology
    Abstract
    This paper presents a comprehensive design procedure of a brushless DC limited angle torque motor (LATM) based on magnetic equivalent circuit analysis which predicts its performance and magnetic characteristics. Design of toroidally wounded armature and rotor with two pole tip segments are developed using selected ferromagnetic material and rare earth permanent magnets. Derivation of airgap and other motor dimensions and design parameters with their expressions are given. A finite element analysis verification of designed LATM using a 2D modeling and simulating package is presented. Performance characteristic of analytical model and FEA model of designed LATM is compared which validates the... 

    Modeling and Optimization of Energy Harvesting System by Means of Magnetic Shape Memory Alloy

    , M.Sc. Thesis Sharif University of Technology Rostami Najafabadi, Hossein (Author) ; Sayyadi, Hassan (Supervisor)
    Abstract
    Among different mechanisems for ambient energy harvesters, energy harvesting systems by means of magnetic shape memory alloys are noted due to their long life time, large strain amplitudes and the ability to operate at low frequencies. Strain change in these systems, changes the MSMA magnetization resulting change in the magnetic flux leading to inducing voltage by means of pickup coil. in the commercial systems, magnetic flux path is created by inserting an MSMA specimen in the air gap of ferromagnetic core and generation of bias magnetic field by means of the permanent magnet or electromagnet. In this proposed research, a thermodynamic based constitutive model is selected for the mdeling... 

    Design and real-time experimental implementation of gain scheduling PID fuzzy controller for hybrid stepper motor in micro-step operation

    , Article Proceedings of the IEEE International Conference on Mechatronics 2004, ICM'04, Istanbul, 3 June 2004 through 5 June 2004 ; 2004 , Pages 421-426 ; 0780385993 (ISBN) Selk Ghafari, A ; Alasty, A ; Sharif University of Technology
    2004
    Abstract
    In this paper, design and real time experimental implementation of Fuzzy Gain Scheduling of PID controller for Hybrid Stepper Motor in Micro-stepping operation is described that was developed to track the desired positioning problem. The control problems characterized by mathematical models exhibit significant nonlinearity and uncertainty. Good performance of proposed Fuzzy PID controller are shown  

    Modeling and parametric studies of magnetic shape memory alloy–based energy harvester

    , Article Journal of Intelligent Material Systems and Structures ; Volume 29, Issue 4 , 2018 , Pages 563-573 ; 1045389X (ISSN) Sayyaadi, H ; Rostami Najafabadi, H ; Askari Farsangi, M. A ; Sharif University of Technology
    SAGE Publications Ltd  2018
    Abstract
    This article presents a model to simulate the behavior of a magnetic shape memory alloy while harvesting vibratory energy. In this type of energy harvester, magnetic shape memory alloy element is placed in the air gap of a ferromagnetic core which conducts the magnetic flux. Two apparent coils are wound around a ferromagnetic core: one to produce bias magnetic field by passing a rectified electric current and the other to serve as an energy pickup coil. Applying compressive time-variant strain field to magnetic shape memory alloy element changes its dimensions and magnetic properties as well. Presence of the bias magnetic field returns magnetic shape memory alloy element to its initial state... 

    Three Dimensional Modeling of Energy Harvester System using Magnetic Shape Memory Alloys

    , M.Sc. Thesis Sharif University of Technology Mehrabi, Mohammad Mahdi (Author) ; Sayyadi, Hassan (Supervisor) ; Hoviat Talab, Maryam (Supervisor)
    Abstract
    Magnetic shape memory alloys (MSMAs) are a new kind of smart materials which are great alternatives for energy harvesting systems due to some unmatched characteristics such as reversible large strain, high cycle fatigue and fast time response. In this work, an energy harvesting system using MSMA is studied. For this goal, a 3-D thermodynamic-based MSMA model is applied for predicting magnetomechanical behavior of the MSMA sample which is used in the energy harvester system. Since demagnetization effect, which has a great influence on the model’s outputs, has been neglected in the selected MSMA model, a new approach is presented for inserting demagnetization coefficients, regarding to the... 

    Performance analysis of outer-rotor single-phase induction motor based on magnetic equivalent circuit

    , Article IEEE Transactions on Industrial Electronics ; Volume 68, Issue 2 , 2021 , Pages 1046-1054 ; 02780046 (ISSN) Saneie, H ; Nasiri Gheidari, Z ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    Single-phase, outer-rotor squirrel cage induction motors are widely used in ceiling fan applications. Furthermore, they can be employed for pumps, and in-wheel hub drives. In this article, an analytical model based on magnetic equivalent circuit is proposed to evaluate the performance of the motor. The influence of rotor slots' skewing, stator end windings, slots' leakage inductance, and core saturation are included in the model. Furthermore, the windings' copper losses and the core's iron losses are calculated using the proposed model. The results of the presented model are compared with those of time variant finite element analysis (TVFEA) and experimental measurements close agreement... 

    Hysteresis nonlinearity identification by using RBF neural network approach

    , Article Proceedings - 2010 18th Iranian Conference on Electrical Engineering, ICEE 2010, 11 May 2010 through 13 May 2010 ; 2010 , Pages 692-697 ; 9781424467600 (ISBN) Firouzi, M ; Bagheri Shouraki, S ; Zakerzadeh, M. R ; Sharif University of Technology
    Abstract
    In systems with hysteresis behavior like magnetic cores, Piezo actuators, Shape Memory Alloy(SMA), we essentially need an accurate modeling of hysteresis either for design or performance evaluation; also in some control applications accurate system identification is needed. One of the famous methods of Hysteresis modeling is Preisach model. In this numerical method hysteresis is modeled by linear combination of smaller hysteresis loops as an elemental operator and local memory. In this paper we discuss those Radial Base artificial neural networks (RBF) which provides natural settings in accordance with the Preisach model. It is shown that the proposed approach can represent hysteresis... 

    Magnetic equivalent circuit model for wound rotor resolver without rotary transformer's core

    , Article IEEE Sensors Journal ; Volume 18, Issue 21 , 2018 , Pages 8693-8700 ; 1530437X (ISSN) Abolqasemi Kharanaq, F ; Alipour Sarabi, R ; Nasiri Gheidari, Z ; Tootoonchian, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    Resolvers are widely used in the control of industrial inverter driven motors. Among different types of resolvers, disk-type wound-rotor resolvers have superior performance under mechanical faults. However, the rotary transformer's (RT's) presence in the inner side of the resolver's core leads to additional radial length. To overcome this problem, disk-type wound-rotor resolver without RT's core has been proposed. However, the optimization using time stepping finite-element method (TSFEM) is time consuming due to 3-D structure of this resolver. Accordingly, in this paper, an analytical model based on the magnetic equivalent circuit is proposed for the design and optimization process. The... 

    Development of a three-dimensional magnetic equivalent circuit model for axial flux machines

    , Article IEEE Transactions on Industrial Electronics ; Volume 67, Issue 7 , 2020 , Pages 5758-5767 Alipour-Sarabi, R ; Nasiri Gheidari, Z ; Oraee, H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    Numerical and analytical methods are two methods to evaluate the performance of electrical machines. This article provides a comparison between numerical and analytical methods. Electrical machine software typically uses numerical methods to solve the electromagnetic equations. On the other hand, analytical methods are faster and more intuitive. A general analytical modeling technique to evaluate the performance of axial flux machines including but not limited to wound rotor resolvers is presented here. The proposed model is based on the actual three-dimensional (3-D) magnetic equivalent circuit (MEC). The accuracy of the proposed model depends on the number of radial layers in the... 

    Analysis and modification of a common energy harvesting system using magnetic shape memory alloys

    , Article Journal of Intelligent Material Systems and Structures ; 2020 Sayyaadi, H ; Mehrabi, M ; Hoviattalab, M ; Sharif University of Technology
    SAGE Publications Ltd  2020
    Abstract
    In this paper, a common energy harvester is investigated which uses a specimen of magnetic shape memory alloy (MSMA). The aim of this study is to improve system performance and to evaluate the magneto-mechanical loading on the MSMA material. Since demagnetization effect is not included in the employed original MSMA model, a method to incorporate this effect is proposed which has a good performance for the specific magneto-mechanical loading of this problem. In order to decrease the need for bias magnetic field and increase system efficiency, a new return mechanism for the MSMA specimen is proposed. The results indicate that the maximum harvested power from the improved system is obtained at... 

    Analytical modeling of variable-reluctance tubular resolver based on magnetic equivalent circuit and conformal mapping

    , Article IEEE Transactions on Instrumentation and Measurement ; Volume 70 , 2021 ; 00189456 (ISSN) Keyvannia, A ; Zare, F ; Tootoonchian, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    Compared with flat linear structures, tubular linear machines do not face edge effects, making their performance better than their flat counterparts. In this article, a novel linear variable-reluctance resolver with tubular configuration is proposed. To optimize the design of an electromagnetic structure, modeling methods are used. Thus, in this article, an analytical model for the proposed resolver is presented. This model is based on the magnetic equivalent circuit (MEC) method and is considerably less time-consuming than finite element analysis (FEA), yet provides accurate results. A conformal mapping is employed to compute the permeance of the air-gap. The proposed model is then utilized... 

    Design-oriented modelling of axial-flux variable-reluctance resolver based on magnetic equivalent circuits and Schwarz-Christoffel mapping

    , Article IEEE Transactions on Industrial Electronics ; Volume 65, Issue 5 , May , 2018 , Pages 4322-4330 ; 02780046 (ISSN) Saneie, H ; Nasiri Gheidari, Z ; Tootoonchian, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    Axial flux variable reluctance (AFVR) resolvers have substantial benefits that make them suitable for motion control drives. However, they suffer from insufficient accuracy, especially in high-accuracy applications. Hence, optimizing the AFVR resolver structure is necessary for improving its commercial usage. However, its accurate modelling needs three-dimensional (3-D) time stepping finite element analysis (TSFEA) that is computationally expensive and unsuitable for co-usage with optimization algorithms. The aim of this paper is to establish an accurate, yet computationally fast, model suitable for optimal design of AFVR resolvers. The working of the proposed model is based on magnetic...