Loading...
Search for: magnetic-nanoparti-cles--mnps
0.006 seconds

    Core-shell γ-Fe2O3/SiO2/PCA/Ag-NPs hybrid nanomaterials as a new candidate for future cancer therapy

    , Article International Journal of Nanoscience ; Vol. 13, issue. 1 , February , 2014 Soleyman, R ; Pourjavadi, A ; Masoud, N ; Varamesh, A ; Sharif University of Technology
    Abstract
    In the current study, γ-Fe2O3/SiO 2/PCA/Ag-NPs hybrid nanomaterials were successfully synthesized and characterized. At first, prepared γ-Fe2O3 core nanoparticles were modified by SiO2 layer. Then they were covered by poly citric acid (PCA) via melting esterification method as well. PCA shell acts as an effective linker, and provides vacancies for conveying drugs. Moreover, this shell as an effective capping agent directs synthesis of silver nanoparticles (Ag-NPs) via in situ photo-reduction of silver ions by sunlight-UV irradiation. This system has several benefits as a suitable cancer therapy nanomaterial. Magnetic nanoparticles (MNPs) can guide Ag-NPs and drugs to cancer cells and then... 

    Monodisperse magnetite (Fe3O4) nanoparticles modified with water soluble polymers for the diagnosis of breast cancer by MRI method

    , Article Journal of Magnetism and Magnetic Materials ; Volume 420 , 2016 , Pages 210-217 ; 03048853 (ISSN) Rezayan, A. H ; Mosavi, M ; Kheirjou, S ; Amoabediny, G ; Shafiee Ardestani, M ; Mohammadnejad, J ; Sharif University of Technology
    Elsevier  2016
    Abstract
    In this study, magnetic nanoparticles (MNPs) were synthesized via co-precipitation method. To enhance the biocompatibility and colloidal stability of the synthesized nanoparticles, they were modified with carboxyl functionalized PEG via dopamine (DPA) linker. Both modified and unmodified Fe3O4 nanoparticles exhibited super paramagnetic behavior (particle size below 20 nm). The saturation magnetization (Ms) of PEGdiacid-modified Fe3O4 was 45 emu/g, which was less than the unmodified Fe3O4 nanoparticles (70 emu/g). This difference indicated that PEGdiacid polymer was immobilized on the surface of Fe3O4 nanoparticles successfully. To evaluate the efficiency of the resulting nanoparticles as... 

    Copper, gold, and silver decorated magnetic core–polymeric shell nanostructures for destruction of pathogenic bacteria

    , Article Russian Journal of Physical Chemistry A ; Volume 91, Issue 5 , 2017 , Pages 936-945 ; 00360244 (ISSN) Padervand, M ; Kiani Karanji, A ; Elahifard, M. R ; Sharif University of Technology
    Maik Nauka-Interperiodica Publishing  2017
    Abstract
    Fe3O4 magnetic nanoparticles (MNPs) were prepared by co-precipitation method. The nanoparticles were silica coated using TEOS, and then modified by the polymeric layers of polypropylene glycol (PPG) and polyethylene glycol (PEG). Finally, the core-shell samples were decorated with Ag, Au, and Cu nanoparticles. The products were characterized by vibrating sample magnetometry (VSM), TGA, SEM, XRD, and FTIR methods. The antibacterial activity of the prepared samples was evaluated in inactivation of E. coli and S. aureus microorganisms, representing the Gram-negative and Gram-positive species, respectively. The effect of solid dosage, bacteria concentration and type of polymeric modifier on the... 

    Reactive absorption in packed bed columns in the presence of magnetic nanoparticles and magnetic field: Modeling and simulation

    , Article Journal of Industrial and Engineering Chemistry ; Volume 45 , 2017 , Pages 131-144 ; 1226086X (ISSN) Rahimi, M ; Molaei Dehkordi, A ; Sharif University of Technology
    Korean Society of Industrial Engineering Chemistry  2017
    Abstract
    In this article, the influences of ferrofluid and magnetic field on the reactive absorption in packed-bed contactors have been investigated. Because of importance of carbon dioxide emission as a global concern, absorption of carbon dioxide was chosen to investigate these effects. In this regard, multitube approach was applied to model the contactor. The simulation results were validated against experimental data reported in the literature in the absence of nanoparticles and magnetic field and good agreement was obtained. Moreover, influences of various operating conditions on the contactor performance were investigated. It was found that for 3.4 vol.% of magnetic nanoparticles (MNPs), the... 

    Dynamic analysis of magnetic nanoparticles crossing cell membrane

    , Article Journal of Magnetism and Magnetic Materials ; Volume 422 , 2017 , Pages 464- ; 03048853 (ISSN) Pedram, M. Z ; Shamloo, A ; Ghafar Zadeh, E ; Alasty, E. Y. C. A ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Nowadays, nanoparticles (NPs) are used in a variety of biomedical applications including brain disease diagnostics and subsequent treatments. Among the various types of NPs, magnetic nanoparticles (MNPs) have been implemented by many research groups for an array of life science applications. In this paper, we studied MNPs controlled delivery into the endothelial cells using a magnetic field. Dynamics equations of MNPs were defined in the continuous domain using control theory methods and were applied to crossing the cell membrane. This study, dedicated to clinical and biomedical research applications, offers a guideline for the generation of a magnetic field required for the delivery of... 

    Heat transfer of PEGylated cobalt ferrite nanofluids for magnetic fluid hyperthermia therapy: In vitro cellular study

    , Article Journal of Magnetism and Magnetic Materials ; Volume 462 , 2018 , Pages 185-194 ; 03048853 (ISSN) Hatamie, S ; Parseh, B ; Ahadian, M. M ; Naghdabadi, F ; Saber, R ; Soleimani, M ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Hyperthermia generally means as increasing the temperature of particular region of body to rise 5 °C above the body's physiological temperature. Here, we investigate the thermal therapy of PEGylated cobalt ferrite nanoparticles prepared by hydrothermal approach on cancerous cell line in the alternative current magnetic field. To characterize of the magnetic nanoparticles (MNPs), scanning electron microscopy, dynamic light scattering, X-ray diffraction, Fourier transform infrared spectroscopy, and vibrating sample magnetometer were used. X-ray diffraction analysis confirmed the spinel phase formation of the MNPs. Cytotoxicity of MNPs using MTT assay on L929 cell lines showed the PEGylated... 

    Immobilization of Au nanoparticles on poly(glycidyl methacrylate)-functionalized magnetic nanoparticles for enhanced catalytic application in the reduction of nitroarenes and Suzuki reaction

    , Article Applied Organometallic Chemistry ; Volume 34, Issue 10 , 2020 Pourjavadi, A ; Kohestanian, M ; Keshavarzi, N ; Sharif University of Technology
    John Wiley and Sons Ltd  2020
    Abstract
    We report a novel strategy for the synthesis of magnetic nanocomposite for highly efficient catalysis. Poly(glycidyl methacrylate) (PGMA) chains were grafted to the surface of magnetic nanoparticles (MNPs) through surface-initiated reversible addition-fragmentation chain transfer polymerization. Then, the oxirane rings in the PGMA chains were opened with 2,6-diamino pyridine (DAP) molecules as ligands to prepare the solid support. Finally, this magnetic nanocomposite was used for the immobilization of gold nanoparticles. Fourier-transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, transmission electron microscopy, scanning electron microscopy, gel permeation... 

    Immobilization of synthesized phenyl-enriched magnetic nanoparticles in a fabricated Y–Y shaped micro-channel containing microscaled hedges as a microextraction platform

    , Article Analytica Chimica Acta ; Volume 1136 , 2020 , Pages 51-61 Rezvani, O ; Hedeshi, M. H ; Bagheri, H ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In this survey, a reliable and applicable Y–Y shaped micro–channel in a microfluidic device was designed and manufactured. A number of micro–scaled hedges were precisely fabricated inside the micro–channel to facilitate the immobilization of synthesized core–shell Fe3O4@SiO2 magnetic nanoparticles (MNPs), functionalized by triethoxyphenylsilane (TEPS) by sol-gel technique. Both sample and reagents were introduced into the microfluidic device by a syringe pump to perform the extraction and desorption steps. The functionalized MNPs were characterized by transmission electron microscopy, X-ray diffraction spectroscopy and Fourier transform infrared spectroscopy. By adopting the strategy of...