Loading...
Search for: magnetic-semiconductors
0.011 seconds

    Temperature and voltage dependence of magnetic barrier junctions with a nonmagnetic spacer

    , Article European Physical Journal B ; Volume 42, Issue 2 , 2004 , Pages 187-191 ; 14346028 (ISSN) Shokri, A. A ; Saffarzadeh, A ; Sharif University of Technology
    2004
    Abstract
    The temperature and voltage dependence of spin transport is theoretically investigated in a new type of magnetic tunnel junction, which consists of two ferromagnetic outer electrodes separated by a ferromagnetic barrier and a nonmagnetic (NM) metallic spacer. The effect of spin fluctuation in magnetic barrier, which plays an important role at finite temperature, is included by taking the mean-field approximation. It is found that, the tunnel magnetoresistance (TMR) and the electron-spin polarization depend strongly on the temperature and the applied voltage. The TMR and spin polarization at different temperatures show an oscillatory behavior as a function of the NM spacer thickness. Also,... 

    Spin dependent recombination in magnetic semiconductor

    , Article Applied Physics Letters ; Volume 94, Issue 24 , 2009 ; 00036951 (ISSN) Tashpour, H ; Vesaghi, M. A ; Sharif University of Technology
    2009
    Abstract
    The effect of spin dependent recombination on the transport properties of magnetic semiconductors is investigated theoretically. In particular, for p -type direct band gap semiconductors, a theory based on classic Shockley equations is formulated. In this theory the density of spin and charge has been evaluated analytically by solving the diffusive transport equation and it is shown that the difference between recombination rates affect the lifetimes of spin and charge significantly. It is also demonstrated that a considerable spin charge coupling occur. Application of this theory to pure band to band recombination process is discussed. © 2009 American Institute of Physics  

    Persistent quantum coherence and strong coupling enable fast electron transfer across the cds/tio2 interface: a time-domain ab initio simulation

    , Article Journal of Physical Chemistry C ; Volume 122, Issue 44 , 2018 , Pages 25606-25616 ; 19327447 (ISSN) Mehdipour, H ; Akimov, A. V ; Jankowska, J ; Rezakhanai, A. T ; Tafreshi, S. S ; De Leeuw, N. H ; Moshfegh, A. Z ; Prezhdo, O. V ; Sharif University of Technology
    American Chemical Society  2018
    Abstract
    Fast transfer of photoinduced electrons and subsequent slow electron-hole recombination in semiconductor heterostructures give rise to long-lived charge separation which is highly desirable for photocatalysis and photovoltaic applications. As a type II heterostructure, CdS/TiO2 nanocomposites extend the absorption edge of the light spectrum to the visible range and demonstrate effective charge separation, resulting in more efficient conversion of solar energy to chemical energy. This improvement in performance is partly explained by the fact that CdS/TiO2 is a type II semiconductor heterostructure and CdS has a smaller energy band gap than UV-active TiO2. Ultrafast transient absorption... 

    Band-gap narrowing and electrochemical properties in N-doped and reduced anodic TiO2 nanotube arrays

    , Article Electrochimica Acta ; Volume 270 , 2018 , Pages 245-255 ; 00134686 (ISSN) Peighambardoust, N. S ; Khameneh Asl, S ; Mohammadpour, R ; Khameneh Asl, S ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Electrochemical activity of TiO2 nanotube arrays (NTAs) is restricted by a wide band gap of TiO2. To overcome this restriction, we considered systematic research on two effective methods of doping of TiO2 NTAs such as the N-doping and electrochemical reductive doping and predicting the proper application of them. Band gap narrowing was occurred from 3.16 eV for undoped TiO2 NTAs to 2.9 and 2.7 eV at N-doped and self-doped TiO2 ones respectively. The electrochemical responses of the TiO2 NTAs before and after doping were examined by cyclic Voltammetry (CV) curve. To understand the electrochemical behavior of the undoped and doped TiO2 NTAs, electrochemical impedance spectroscopy (EIS) was... 

    Design and tailoring of one-dimensional ZnO nanomaterials for photocatalytic degradation of organic dyes: a review

    , Article Research on Chemical Intermediates ; Volume 45, Issue 4 , 2019 , Pages 2197-2254 ; 09226168 (ISSN) Samadi, M ; Zirak, M ; Naseri, A ; Kheirabadi, M ; Ebrahimi, M ; Moshfegh, A. Z ; Sharif University of Technology
    Springer Netherlands  2019
    Abstract
    Abstract: Photocatalysis using semiconductors has emerged as a promising wastewater treatment process to overcome the major challenges faced by conventional technologies. The advantages of ZnO nanomaterials over other semiconductors, and their structure-dependent properties, make them important building blocks in nanotechnology as multifunctional materials. Moreover, it has been confirmed that ZnO nanomaterials can exhibit high performance in photodegradation of organic dyes for treatment of industrial effluent. The wurtzite structure of ZnO contains polar and nonpolar planes; the low surface energy and thermodynamic stability of the nonpolar planes enable formation of one-dimensional (1D)... 

    Anti-reflection and self-cleaning meso-porous TiO2 coatings as solar systems protective layer: Investigation of effect of porosity and roughness

    , Article Optical Materials ; Volume 107 , 2020 Sharifi Rad, A ; Afshar, A ; Azadeh, M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Anti-reflection and self-cleaning coatings on the glass substrate are used to improve the performance of solar systems. TiO2 are one of the most used semiconductors for this application. In this research meso-porous TiO2 coatings (that synthesized by the sol-gel process) with the various extent of porosity (using different concentrations of Pluronic F127, as pore-forming agent) have been investigated. The coating's thickness and porosity and anti-reflective properties were studied by FE-SEM and UV/VIS spectrometer (transmission spectra test), respectively. It was found that the use of F127 leads to the formation of pores smaller than 30 nm and increases the surface roughness from 1.5 (for... 

    Stereometric analysis of TiO2 thin films deposited by electron beam ion assisted

    , Article Optical and Quantum Electronics ; Volume 52, Issue 5 , 2020 Shakoury, R ; Arman, A ; Ţălu, Ş ; Dastan, D ; Luna, C ; Rezaee, S ; Sharif University of Technology
    Springer  2020
    Abstract
    The micromorphology and semiconductor properties of TiO2 thin films growth using different ion beam energies have been finely analyzed using atomic force microscopy (AFM), ultra-violet visible (UV–visible) spectroscopy and stereometric analysis. The AFM measurements and surface stereometric analysis are essential for the accurate characterization of the 3-D surface topographic features and allow the determination of the 3-D surface texture parameters that influence the optical properties of the material. The samples were divided into four groups to discuss the obtained results, according to the ion beam energy applied in the sample preparation. The results obtained from experimental... 

    Enhanced photocatalytic activity of ZnO/g-C3N4 nanofibers constituting carbonaceous species under simulated sunlight for organic dye removal

    , Article Ceramics International ; Volume 47, Issue 18 , 2021 , Pages 26185-26196 ; 02728842 (ISSN) Naseri, A ; Samadi, M ; Pourjavadi, A ; Ramakrishna, S ; Moshfegh, A. Z ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Semiconductor-based photocatalysis is an efficient approach for degradation of organic pollutants. In this context, ZnO/g-C3N4 composite nanofibers containing carbonaceous species with different concentrations of g-C3N4 nanosheets (x = 0.25, 0.5, 1, 2, 10 wt%) noted as ZnO/carbon/(x wt%) g-C3N4 are prepared by electrospinning technique. For preparation of the composite nanofibers, bulk g-C3N4 is exfoliated to nanosheets, and then it is mixed with polyvinyl alcohol and appropriate zinc acetate content followed by electrospinning process. Thermal annealing of the as spun zinc acetate/poly(vinyl alcohol)/g-C3N4 nanosheets sample under N2 atmosphere leads to the formation of carbonaceous species... 

    High-Voltage, high-current electrical switching discharge synthesis of ZnO nanorods: A new method toward rapid and highly tunable synthesis of oxide semiconductors in open air and water for optoelectronic applications

    , Article ACS Applied Materials and Interfaces ; Volume 13, Issue 39 , 2021 , Pages 46951-46966 ; 19448244 (ISSN) Sharifi Malvajerdi, S ; Abrari, M ; Karimi, V ; Shafiee, M ; Ghollamhosseini, S ; Taheri Ghahrizjani, R ; Ahmadi, M ; Wang, D ; Sun, H ; Soltanmohammadi, M ; Imani, A ; Ghanaatshoar, M ; Mohseni, S. M ; Taghavinia, N ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    A novel method of oxide semiconductor nanoparticle synthesis is proposed based on high-voltage, high-current electrical switching discharge (HVHC-ESD). Through a subsecond discharge in the HVHC-ESD method, we successfully synthesized zinc oxide (ZnO) nanorods. Crystallography and optical and electrical analyses approve the high crystal-quality and outstanding optoelectronic characteristics of our synthesized ZnO. The HVHC-ESD method enables the synthesis of ZnO nanorods with ultraviolet (UV) and visible emissions. To demonstrate the effectiveness of our prepared materials, we also fabricated two UV photodetectors based on the ZnO nanorods synthesized using the subsecond HVHC-ESD method. The... 

    Physical, structural, conductive and magneto-optical properties of rare earths (Yb, Gd) doped Ni–Zn spinel nanoferrites for data and energy storage devices

    , Article Ceramics International ; Volume 47, Issue 9 , 2021 , Pages 11878-11886 ; 02728842 (ISSN) Akhtar, M.N ; Yousaf, M ; Lu, Y ; Khan, M. A ; Sarosh, A ; Arshad, M ; Niamat, M ; Farhan, M ; Ahmad, A ; Khallidoon, M. U ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In this study, an attempt has been made using different concentrations of rare-earth (RE) elements Yb, Gd in Ni–Zn spinel ferrite to examine the magneto-optical and electrical conductivity analysis of the prepared samples. RE doped Ni–Zn ferrite with composition Ni0.5Zn0.5YbxGdxFe2-xO4 (where, x = 0.00, 0.20, 0.40, 0. 60, 0.80 and 1.00) were prepared by one step sol-gel self-ignition approach. XRD and FESEM were used to examine the formation of a single-phase and variations in the grain size with the increasing contents of RE elements in Ni–Zn ferrite NPs. FTIR confirmed the vibrational studies of the RE doped spinel ferrite. The saturation magnetization, remanence, and coercivity elucidated... 

    Physical, structural, conductive and magneto-optical properties of rare earths (Yb, Gd) doped Ni–Zn spinel nanoferrites for data and energy storage devices

    , Article Ceramics International ; Volume 47, Issue 9 , 2021 , Pages 11878-11886 ; 02728842 (ISSN) Akhtar, M. N ; Yousaf, M ; Lu, Y ; Khan, M. A ; Sarosh, A ; Arshad, M ; Niamat, M ; Farhan, M ; Ahmad, A ; Khallidoon, M. U ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In this study, an attempt has been made using different concentrations of rare-earth (RE) elements Yb, Gd in Ni–Zn spinel ferrite to examine the magneto-optical and electrical conductivity analysis of the prepared samples. RE doped Ni–Zn ferrite with composition Ni0.5Zn0.5YbxGdxFe2-xO4 (where, x = 0.00, 0.20, 0.40, 0. 60, 0.80 and 1.00) were prepared by one step sol-gel self-ignition approach. XRD and FESEM were used to examine the formation of a single-phase and variations in the grain size with the increasing contents of RE elements in Ni–Zn ferrite NPs. FTIR confirmed the vibrational studies of the RE doped spinel ferrite. The saturation magnetization, remanence, and coercivity elucidated... 

    Shape-Controlled photochemical synthesis of noble metal nanocrystals based on reduced graphene oxide

    , Article ACS Applied Materials and Interfaces ; Volume 14, Issue 14 , 2022 , Pages 16527-16537 ; 19448244 (ISSN) Liu, Y ; Naseri, A ; Li, T ; Ostovan, A ; Asadian, E ; Jia, R ; Shi, L ; Huang, L ; Moshfegh, A. Z ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    The fabrication of supported noble metal nanocrystals (NCs) with well-controlled morphologies have been attracted considerable interests due to their merits in a wide variety of applications. Photodeposition is a facile and effective method to load metals over semiconductors in a simple slurry reactor under irradiation. By optimizing the photodeposition process, the size, chemical states, and the geometrical distribution of metal NCs have been successfully tuned. However, metal NCs with well-controlled shapes through the photodeposition process have not been reported until now. Here, we report our important advances in the controlled photodeposition process to load regular noble metal NCs.... 

    Partly semiconductor covered vane fast magnetron

    , Article IEEE Transactions on Plasma Science ; Volume 50, Issue 5 , 2022 , Pages 1179-1187 ; 00933813 (ISSN) Hashemi, S. M. A ; Hashemi, S. M. A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    Alterations in the structure of a magnetron, e.g., the A6 relativistic magnetron, are proposed, which considerably increase the device's build-up speed. We cover the magnetron vane surfaces with semiconductor layers of nonzero electric conductivity, with an exact geometrical design. Semiconductor layers with considerable mechanical strength also provide excellent shielding for the vanes against the high-energy relativistic electrons' bombardment. The novel structure introduces several new free parameters to the magnetron design procedure and considerably increases the design flexibility. A multistage exact optimization procedure, performed by extensive computer simulations, shows that... 

    Synthesis of magneto-plasmonic Au-Ag NPs-decorated TiO2-modified Fe3O4 nanocomposite with enhanced laser/solar-driven photocatalytic activity for degradation of dye pollutant in textile wastewater

    , Article Ceramics International ; Volume 45, Issue 14 , 2019 , Pages 17837-17846 ; 02728842 (ISSN) Amoli Diva, M ; Anvari, A ; Sadighi Bonabi, R ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    The synergistic effect of plasmonic Au-Ag nanoparticles (NPs) on the increase of absorption band of nano-sized TiO2 and magnetic property of Fe3O4 NPs on the separation-ability of this semiconductor was applied for preparation of eight magneto-plasmonic photocatalysts for degradation of rhodamine-6G (Rh6G) in textile wastewater. The size, structure, morphology, crystallinity and optical and magnetic properties of prepared photocatalysts have been evaluated by various characterization techniques. Their photocatalytic activities were assessed under irradiation of an intense linear 405-nm laser and a continuous solar-simulated xenon lamp. The results were demonstrated that in comparison to the... 

    Surface modification of carbon steel by ZnO-graphene nano-hybrid thin film

    , Article Surface and Coatings Technology ; Volume 363 , 2019 , Pages 1-11 ; 02578972 (ISSN) Razavizadeh, O ; Ghorbani, M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Application of corrosion resistant coatings is one of the most widely used means of protecting steel. Zinc coated (galvanize) steel, is well known for galvanic protection of steel substrates and nowadays, particular attention has been paid to the coupling of graphene oxide (GO) with metallic materials, in order to lessen corrosion rate. In this research, an isopropanol supercritical reducing environment prepared to make zinc ions bond directly with graphene oxides, to form a button shape hybrids of ZnO-Graphene (ZnOG). The hybridized bonding between zinc and graphene oxide is confirmed by Fourier Transform Infra-Red analysis. And the morphology revealed, using a Field Emission Scanning...