Loading...
Search for: magnetic-targeting
0.006 seconds

    Drug delivery and adhesion of magnetic nanoparticles coated nanoliposomes and microbubbles to atherosclerotic plaques under magnetic and ultrasound fields

    , Article Engineering Applications of Computational Fluid Mechanics ; Volume 15, Issue 1 , 2021 , Pages 1703-1725 ; 19942060 (ISSN) Alishiri, M ; Ebrahimi, S ; Shamloo, A ; Boroumand, A ; Mofrad, M. R. K ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    The use of external fields such as magnet and ultrasound to enhance the targeted drug delivery (TDD) by nano-microcarriers could be a potential method. In this research, the drug delivery of magnetic nanoparticles (NPs) coated nanoliposomes and microbubbles (MBs) to the atherosclerosis plaque was investigated under magnetic and ultrasound fields in terms of their adhesion to the plaque through ligand–receptor binding. The Halbach arrangement enhanced the surface density of nanoliposomes and MBs adhered to the plaque by ∼ (Formula presented.) and ∼ (Formula presented.), respectively. A focused transducer at the power of (Formula presented.) led to better drug delivery performance and caused ∼... 

    Drug delivery and adhesion of magnetic nanoparticles coated nanoliposomes and microbubbles to atherosclerotic plaques under magnetic and ultrasound fields

    , Article Engineering Applications of Computational Fluid Mechanics ; Volume 15, Issue 1 , 2021 , Pages 1703-1725 ; 19942060 (ISSN) Alishiri, M ; Ebrahimi, S ; Shamloo, A ; Boroumand, A ; Mofrad, M. R. K ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    The use of external fields such as magnet and ultrasound to enhance the targeted drug delivery (TDD) by nano-microcarriers could be a potential method. In this research, the drug delivery of magnetic nanoparticles (NPs) coated nanoliposomes and microbubbles (MBs) to the atherosclerosis plaque was investigated under magnetic and ultrasound fields in terms of their adhesion to the plaque through ligand–receptor binding. The Halbach arrangement enhanced the surface density of nanoliposomes and MBs adhered to the plaque by ∼ (Formula presented.) and ∼ (Formula presented.), respectively. A focused transducer at the power of (Formula presented.) led to better drug delivery performance and caused ∼... 

    Magnetic pH-responsive nanocarrier with long spacer length and high colloidal stability for controlled delivery of doxorubicin

    , Article Colloids and Surfaces B: Biointerfaces ; Vol. 116 , April , 2014 , pp. 49-54 ; ISSN: 09277765 Pourjavadi, A ; Hosseini, S. H ; Alizadeh, M ; Bennett, C ; Sharif University of Technology
    Abstract
    A novel magnetic nanocarrier with long spacer length and high colloidal stability has been prepared for effective delivery of doxorubicin (DOX). First, poly(amidoamine) (PAMAM) dendrimer was grown up onto the surface of superparamagnetic iron oxide nanoparticles to increase the loading amount of amine groups. Then, terminal amine groups were functionalized by polyethylene glycol dimethylester to increase the spacer length. Then anticancer drug DOX was covalently attached onto the system by hydrazone bond to forms a pH-sensitive nanocarrier. This system is designed to combine the advantage of magnetic targeting, high drug loading capacity, and controlled release