Loading...
Search for: magnetostatics
0.006 seconds

    Tunneling of the unidirectional magnetostatic mode of a ferrite-loaded waveguide through finite barriers

    , Article Journal of Magnetism and Magnetic Materials ; Volume 485 , 2019 , Pages 257-264 ; 03048853 (ISSN) Marvasti, M ; Rejaei, B ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    A partially filled, ferrite-loaded rectangular waveguide can support a unidirectional propagating mode. We theoretically study the tunneling of this mode through finite conducting and non-conducting barriers. For a half-filled waveguide and a conducting barrier, the problem is treated analytically. Other filling factors and/or barrier types are investigated by means of a numerical technique. It is found that despite the absence of back-scattering, the passage of the unidirectional wave through a barrier is accompanied by significant power loss, even for short barriers. This phenomenon is caused by the sharp rise in field amplitude close to the barrier, and cannot be eliminated by reducing... 

    Elemental field distributions in corrugated structures with large-amplitude gratings

    , Article Electronics Letters ; Volume 39, Issue 23 , 2003 , Pages 1690-1691 ; 00135194 (ISSN) Manzuri Shalmani, M. T ; Baghai Wadji, A. R ; Sharif University of Technology
    2003
    Abstract
    A unified and robust method has been introduced to compute magnetostatic and electrostatic fields for nonperiodic excitations in periodically corrugated anisotropic structures. The method extends a previously published concept of modified phased-periodic Green's functions for solving flat-surface problems. Convergent results have been obtained for corrugations with aspect ratios exceeding 15. Novel elemental field distributions are presented as examples  

    Study of Unidirectional Surface Waves Propagation in Magnetic Layers and their Behavior Near Different Barriers

    , M.Sc. Thesis Sharif University of Technology Emad Marvasti, Mohammad Fater (Author) ; Rejaei Salmasi, Behzad (Supervisor)
    Abstract
    Lorentz reciprocity theorem is one of the most fundamental concepts in electromagnetism. Although, in specific conditions, for example in nonlinear systems or systems with broken time-reversal symmetry it can be violated. In recent years, many interests have been attracted towards such systems. With a proper design, they can support nonreciprocal or at specific conditions unidirectional propagation behavior. For example, despite ordinary dielectrics, in ferrite layers, the propagation constant of surface waves on ferrite edge, depends on the direction of propagation with respect to magnetization direction. Furthermore, in the specific interval of frequencies, ferrite structures allow... 

    A SPH solver for simulating paramagnetic solid fluid interaction in the presence of an external magnetic field

    , Article Applied Mathematical Modelling ; Volume 40, Issue 7-8 , 2016 , Pages 4341-4369 ; 0307904X (ISSN) Hashemi, M. R ; Manzari, M. T ; Fatehi, R ; Sharif University of Technology
    Elsevier Inc  2016
    Abstract
    The Smoothed Particle Hydrodynamics (SPH) method is extended to solve magnetostatic problems involving magnetically interacting solid bodies. In order to deal with the jump in the magnetic permeability at a fluid-solid interface, a consistent SPH scheme is utilized and a modified formulation is proposed to calculate the magnetic force density along the interface. The results of the magnetostatic solver are verified against those of the finite element method. The governing fluid flow equations are discretized using the same SPH scheme, developing an efficient method for simulating the motion of paramagnetic solid bodies in a fluid flow. The proposed algorithm is applied to a benchmark problem... 

    A Phase-Field Model for Inhomogeneous Multiferroic Materials

    , M.Sc. Thesis Sharif University of Technology Jafari, Bahram (Author) ; Tavakoli, Rouhollah (Supervisor)
    Abstract
    In this thesis, by deliberately embedding “emplacements” in the system to locally break the inversion and the time reversal symmetries, the manifold of all possible microstructures is navigated in pursuit of the one that can give rise to maximal magnetoelectric effect mediated by elastic energy of piezoelectric-piezomagnetic phases via their interface --- needless to mention the low intensity of such an effect in single-phase multiferroics. The configuration with the maximal coupling is sought within the context of phase-field modeling. In order to numerically track the conserved dissipative dynamics of the interface (namely, the Cahn-Hilliard equation) --- that is nonlocal by the nature of... 

    Excitation current optimization of fluxgate magnetometers for active magnetic shielding of SQUID-based magnetocardiography system

    , Article Journal of Superconductivity and Novel Magnetism ; Volume 30, Issue 8 , 2017 , Pages 2323-2328 ; 15571939 (ISSN) Shanehsazzadeh, F ; Kalantari, N ; Jabbari, T ; Fardmanesh, M ; Sharif University of Technology
    Abstract
    In order to achieve stable operation for a developed high-Tc SQUID-based magnetocardiography system, a two-stage active magnetic shielding technique is implemented. This technique is based on a combination of fluxgate and high-Tc SQUID magnetometers feedback loops. While two YBCO rf SQUIDs in a gradiometric configuration are used at liquid Nitrogen temperature as the main sensors for the heart signal detection and low-amplitude noise signals cancellation in one stage, a fluxgate is used to cancel large far-field environmental noise in the other stage feedback loop. The fluxgate sensors working in the fundamental mode under the optimized bias conditions have white noise levels less than 10... 

    Shielding factor enhancement method for Bi-stage active shield in SQUID-based magnetocardiography system

    , Article 29th Iranian Conference on Electrical Engineering, ICEE 2021, 18 May 2021 through 20 May 2021 ; 2021 , Pages 129-133 ; 9781665433655 (ISBN) Alipour, Z ; Esmaeili, F ; Shanehsazzadeh, F ; Fardmanesh, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    We proposed a simple method to enhance shielding factor of our previously proposed bi-stage active shield system employed in a SQUID-based magnetocardiography system. The additional proposed design is optimized for canceling the power-line magnetic interference field to provide a calmer magnetic environment for the bi-stage active shield. A 50 Hz cancellation coil is placed around the bi-stage shielding system which includes inner and outer coils designed for compensating low-frequency (0-0.1Hz) and high-frequency (0.1-100Hz) environmental magnetic noise, respectively. In this configuration, a SQUID magnetometer is located at the center of these coils. Considering that the power-line... 

    Shielding factor enhancement method for bi-stage active shield in SQUID-based magnetocardiography system

    , Article 29th Iranian Conference on Electrical Engineering, ICEE 2021, 18 May 2021 through 20 May 2021 ; 2021 , Pages 129-133 ; 9781665433655 (ISBN) Alipour, Z ; Esmaeili, F ; Shanehsazzadeh, F ; Fardmanesh, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    We proposed a simple method to enhance shielding factor of our previously proposed bi-stage active shield system employed in a SQUID-based magnetocardiography system. The additional proposed design is optimized for canceling the power-line magnetic interference field to provide a calmer magnetic environment for the bi-stage active shield. A 50 Hz cancellation coil is placed around the bi-stage shielding system which includes inner and outer coils designed for compensating low-frequency (0-0.1Hz) and high-frequency (0.1-100Hz) environmental magnetic noise, respectively. In this configuration, a SQUID magnetometer is located at the center of these coils. Considering that the power-line... 

    Excitation current optimization of fluxgate magnetometers for active magnetic shielding of SQUID-Based magnetocardiography system

    , Article Journal of Superconductivity and Novel Magnetism ; 2016 , Pages 1-6 ; 15571939 (ISSN) Shanehsazzadeh, F ; Kalantari, N ; Jabbari, T ; Fardmanesh, M ; Sharif University of Technology
    Springer New York LLC 
    Abstract
    In order to achieve stable operation for a developed high-Tc SQUID-based magnetocardiography system, a two-stage active magnetic shielding technique is implemented. This technique is based on a combination of fluxgate and high-Tc SQUID magnetometers feedback loops. While two YBCO rf SQUIDs in a gradiometric configuration are used at liquid Nitrogen temperature as the main sensors for the heart signal detection and low-amplitude noise signals cancellation in one stage, a fluxgate is used to cancel large far-field environmental noise in the other stage feedback loop. The fluxgate sensors working in the fundamental mode under the optimized bias conditions have white noise levels less than 10... 

    Environmental noise cancellation for high-TC SQUID-based magnetocardiography systems using a bistage active shield

    , Article IEEE Transactions on Applied Superconductivity ; 2017 ; 10518223 (ISSN) Shanehsazzadeh, F ; Kalantari, N ; Sarreshtedari, F ; Fardmanesh, M ; Sharif University of Technology
    Abstract
    An active noise cancellation method is proposed for superconducting quantum interference devices (SQUID)-based magnetocardiography systems working out of magnetically shielded rooms. Using YBCO high-Tc rf-SQUID magnetometers as magnetic field sensors, an active shielding system was implemented based on this method. This method incorporates two different shielding frequency regimes of operation simultaneously. This is because the unwanted background magnetic field signals range from very low frequencies up to high frequencies with a wide range of amplitudes at the upper and lower frequency spectra. Therefore, the shielding system is designed in a bistage configuration, and each stage covers...