Loading...
Search for: martensite-variant-reorientation
0.004 seconds

    A three-dimensional constitutive model for magnetic shape memory alloys under magneto-mechanical loadings

    , Article Smart Materials and Structures ; Volume 26, Issue 1 , 2017 ; 09641726 (ISSN) Mousavi, M. R ; Arghavani, J ; Sharif University of Technology
    Institute of Physics Publishing  2017
    Abstract
    This paper presents a three-dimensional phenomenological constitutive model for magnetic shape memory alloys (MSMAs), developed within the framework of irreversible continuum thermodynamics. To this end, a proper set of internal variables is introduced to reflect the microstructural consequences on the material macroscopic behavior. Moreover, a stress-dependent thermodynamic force threshold for variant reorientation is introduced which improves the model accuracy. Preassumed kinetic equations for magnetic domain volume fractions, decoupled equations for magnetization unit vectors and appropriate presentation of the limit function for martensite variant reorientation lead to a simple... 

    Frequency-dependent energy harvesting via magnetic shape memory alloys

    , Article Smart Materials and Structures ; Volume 24, Issue 11 , October , 2015 ; 09641726 (ISSN) Sayyaadi, H ; Askari Farsangi, M. A ; Sharif University of Technology
    Institute of Physics Publishing  2015
    Abstract
    This paper is focused on presenting an accurate framework to describe frequency-dependent energy harvesting via magnetic shape memory alloys (MSMAs). Modeling strategy incorporates the phenomenological constitutive model developed formerly together with the magnetic diffusion equation. A hyperbolic hardening function is employed to define reorientation-induced strain hardening in the material, and the diffusion equation is used to add dynamic effects to the model. The MSMA prismatic specimen is surrounded by a pickup coil, and the induced voltage during martensite-variant reorientation is investigated with the help of Faraday's law of magnetic field induction. It has been shown that, in... 

    A novel inertial energy harvester using magnetic shape memory alloy

    , Article Smart Materials and Structures ; Volume 25, Issue 10 , 2016 ; 09641726 (ISSN) Askari Farsangi, M. A ; Sayyaadi, H ; Zakerzadeh, M. R ; Sharif University of Technology
    Institute of Physics Publishing  2016
    Abstract
    This paper studies the output voltage from a novel inertial energy harvester using magnetic shape memory alloys (MSMAs). The MSMA elements are attached to the root of a cantilever beam by means of two steps. In order to get electrical voltage, two coils are wound around the MSMAs and a shock load is applied to a tip mass at the end of the beam to have vibration in it. The beam vibration causes strain in the MSMAs along their longitudinal directions and as a result the magnetic flux alters in the coils. The change of magnetic flux in the surrounding coil produces an AC voltage. In order to predict the output voltage, the nonlinear governing equations of beam motion based on Euler-Bernoulli... 

    Multiphysics modeling of an MSMA-based clamped-clamped inertial energy harvester

    , Article Smart Materials and Structures ; Volume 28, Issue 3 , 2019 ; 09641726 (ISSN) Askari Farsangi, M. A ; Zakerzadeh, M. R ; Sharif University of Technology
    Institute of Physics Publishing  2019
    Abstract
    In this paper, an alternative way of harvesting energy from ambient vibration is investigated through proposing a novel inertial energy harvester using magnetic shape memory alloys (MSMAs). To this end, a clamped-clamped beam is coupled with MSMA units which are attached to its roots. A shock load is applied to a proof mass in the middle of the beam. The beam vibration causes longitudinal strain in the MSMAs and as a result the magnetic flux alters in the coils wounding around the MSMA units and produce an AC voltage. To have a reversible strain in MSMAs, a bias magnetic field is applied in transverse direction of the MSMA units. The large scale vibration of Euler-Bernoulli beam is modeled...