Loading...
Search for: mass-conservation-law
0.007 seconds

    Analysis of the sedimentation process in reactive polymeric suspensions

    , Article Chemical Engineering Science ; Volume 61, Issue 23 , 2006 , Pages 7565-7578 ; 00092509 (ISSN) Shojaei, A ; Arefinia, R ; Sharif University of Technology
    2006
    Abstract
    Sedimentation of particles can undermine the uniformity of the product in the manufacture of the particle-filled composites. An adequate mathematical description of the sedimentation process could be helpful for providing necessary information concerning the dominant parameters and can give an insight for the process designer to prevent such an undesirable phenomenon in composite production. The present article deals with the mathematical modeling of settling particles during curing of polymer matrix composites. The sedimentation process is described by the mass conservation law for particles. Since the viscosity of the suspending polymer increases as a result of curing process, a new model... 

    Free fall and controlled gravity drainage processes in fractured porous media: Laboratory and modelling investigation

    , Article Canadian Journal of Chemical Engineering ; Volume 93, Issue 12 , October , 2015 , Pages 2286-2297 ; 00084034 (ISSN) Saedi, B ; Ayatollahi, S ; Masihi, M ; Sharif University of Technology
    Wiley-Liss Inc  2015
    Abstract
    Gravity drainage is known to be one of the most effective methods for oil recovery in fractured reservoirs. In this study, both free fall and controlled gravity drainage processes were studied using a transparent fractured experimental model, followed by modelling using commercial CFD software. The governing equations were employed based on the Darcy and mass conservation laws and partial pressure formulation. Comprehensive examination was done on variables such as fluid saturation, velocity, and pressure distribution in the matrix and fracture, as well as fluid front level and production rate. Additionally, effects of the model parameters on the gravity drainage performance were... 

    Numerical modeling of density-driven solute transport in fractured porous media with the extended finite element method

    , Article Advances in Water Resources ; Volume 136 , 2020 Hosseini, N ; Bajalan, Z ; Khoei, A. R ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this paper, a numerical model is developed based on the X-FEM technique to simulate the transport of dense solute in a single fluid phase through the fractured porous media. The governing equation is based on the mass conservation law which is applied to the fluid phase and the solute in both matrix and fracture domain. The integral governing equations of the mass exchange between the fracture and the surrounding matrix is derived. The extended finite element method (X-FEM) is applied by employing appropriate enrichment functions to model the fractured porous domain. The superiority of the X-FEM is that the FE mesh is not necessary to be conformed to the fracture geometry, so the regular...