Loading...
Search for: mass-diffusion
0.005 seconds

    Invariance in growth and mass transport

    , Article Mathematics and Mechanics of Solids ; Volume 24, Issue 6 , 2019 , Pages 1707-1713 ; 10812865 (ISSN) Javadi, M ; Epstein, M ; Sharif University of Technology
    SAGE Publications Inc  2019
    Abstract
    The equations of balance of a continuum under conditions of growth and mass diffusion are derived from a principle of invariance under general observer transformations. The resulting equations are invariant under inertial transformations. Apparent body forces stemming from the mass transport phenomenon are identified and shown to be associated with non-inertial observers  

    Quantifying the direct influence of diffusive mass transfer in rarefied gas mixing simulations

    , Article Journal of Fluids Engineering, Transactions of the ASME ; Volume 140, Issue 3 , March , 2018 ; 00982202 (ISSN) Darbandi, M ; Sabouri, M ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2018
    Abstract
    This work utilizes the direct simulation Monte Carlo (DSMC) calculations and examines the influence of rarefication on the mixing length and effective diffusion coefficient in a two-species mixing problem. There have been efforts in past rarefied mixing flow studies to bridge between the mixing evolution rate and Knudsen number. A careful review of those efforts shows that the past derived relations did not determine the weights of Reynolds (or Peclet) number in the rarefaction influences. Although they indicated that an increase in Knudsen would decrease the mixing length, such reductions were primarily due to the Reynolds (or Peclet) reduction. Therefore, those studies could not explicitly... 

    Photocatalytic degradation of furfural by titania nanoparticles in a floating-bed photoreactor

    , Article Chemical Engineering Journal ; Volume 146, Issue 1 , 2009 , Pages 79-85 ; 13858947 (ISSN) Faramarzpour, M ; Vossoughi, M ; Borghei, M ; Sharif University of Technology
    2009
    Abstract
    In this research, an attempt was made to investigate the potential of nanophotocatalysts for treatment of hazardous wastewater streams. Titanium dioxide nanoparticles (as photocatalyst) were immobilized on a porous and low-density support called "perlite" using a very simple and inexpensive method. TiO2-coated perlite granules were used in a "Floating-bed photoreactor" to study the photocatalytic purification process of a typical wastewater polluted by furfural. The effects of initial concentration, catalyst mass/solution volume ratio, oxidant molar flow, residence time, and light intensity on process removal efficiency, and kinetics of the reactions were studied. SEM analyses showed a...