Loading...
Search for: mass-velocity
0.005 seconds

    Parametric study of the dynamic response of thin rectangular plates traversed by a moving mass

    , Article Acta Mechanica ; Volume 223, Issue 1 , September , 2012 , Pages 15-27 ; 00015970 (ISSN) Nikkhoo, A ; Rofooei, F. R ; Sharif University of Technology
    2012
    Abstract
    The governing differential equation of motion of a thin rectangular plate excited by a moving mass is considered. The moving mass is traversing on the plate's surface at arbitrary trajectories. Eigenfunction expansion method is employed to solve the constitutive equation of motion for various boundary conditions. Approximate and exact expressions of the inertial effects are adopted for the problem formulation. In the approximate formulation, only the vertical acceleration component of the moving mass is considered while in the exact formulation all the convective acceleration components are included in the problem formulation as well. Parametric studies are carried out to investigate the... 

    Prediction capabilities of classical and shear deformable beam models excited by a moving mass

    , Article Journal of Sound and Vibration ; Volume 320, Issue 3 , 2009 , Pages 632-648 ; 0022460X (ISSN) Kiani, K ; Nikkhoo, A ; Mehri, B ; Sharif University of Technology
    2009
    Abstract
    In this paper, a comprehensive assessment of design parameters for various beam theories subjected to a moving mass is investigated under different boundary conditions. The design parameters are adopted as the maximum dynamic deflection and bending moment of the beam. To this end, discrete equations of motion for classical Euler-Bernoulli, Timoshenko and higher-order beams under a moving mass are derived based on Hamilton's principle. The reproducing kernel particle method (RKPM) and extended Newmark-β method are utilized for spatial and time discretization of the problem, correspondingly. The design parameter spectra in terms of the beam slenderness, mass weight and velocity of the moving... 

    Dynamic analysis of laminated composite plates traversed by a moving mass based on a first-order theory

    , Article Composite Structures ; Volume 92, Issue 8 , 2010 , Pages 1865-1876 ; 02638223 (ISSN) Ghafoori, E ; Asghari, M ; Sharif University of Technology
    2010
    Abstract
    The dynamic response of angle-ply laminated composite plates traversed by a moving mass or a moving force is investigated. For this purpose, a finite element method based on the first-order shear deformation theory is used. Stationary and adaptive mesh techniques have been applied as two different meshing schemes. The adaptive mesh strategy is then used to avoid off-nodal position of moving mass. In this manner, the finite element mesh is continuously adapted to follow and comply with the path of moving mass. A Newmark direct integration method is employed to solve the equations of motion. Parametric study is directed to find out how different parameters like mass of the moving object as...