Search for: maximum-concentration
0.003 seconds

    Influence of the angle of incident shock wave on mixing of transverse hydrogen micro-jets in supersonic crossflow

    , Article International Journal of Hydrogen Energy ; Volume 40, Issue 30 , August , 2015 , Pages 9590-9601 ; 03603199 (ISSN) Barzegar Gerdroodbary, M ; Jahanian, O ; Mokhtari, M ; Sharif University of Technology
    Elsevier Ltd  2015
    A three-dimensional numerical study has been performed to investigate the influence of angle of shock waves on sonic transverse Hydrogen micro-jets subjected to a supersonic crossflow. This study focuses on mixing of the Hydrogen jet in a Mach 4.0 crossflow with a global equivalence ratio of 0.5. Flow structure and fuel/air mixing mechanism were investigated numerically. Parametric studies were conducted on the angle of shock wave by using the Reynolds-averaged Navier-Stokes equations with Menter's Shear Stress Transport turbulence model. Complex jet interactions were found in the downstream region with a variety of flow features depending upon the angle of shock incident. These flow... 

    Zn-rich (GaN)1−x(ZnO)x: a biomedical friend?

    , Article New Journal of Chemistry ; Volume 45, Issue 8 , 2021 , Pages 4077-4089 ; 11440546 (ISSN) Bagherzadeh, M ; Rabiee, N ; Fatahi, Y ; Dinarvand, R ; Sharif University of Technology
    Royal Society of Chemistry  2021
    A Zn-Rich (GaN)1−x(ZnO)xnanostructure was synthesized with the assistance of a high-gravity technique in order to reduce the reaction time and temperature. The synthesized inorganic nanomaterial has been applied in both drug and gene delivery systems, and as the first fully inorganic nanomaterial, it was investigated in a comprehensive cellular investigation as well. In order to increase the potential bioavailability, as well as the interactions with the pCRISPR, the nanomaterial was enriched with additional Zn ions. The nanomaterial and the final nanocarrier were characterized at each step before and after any biological analysisviaFESEM, AFM, TEM, FTIR and XRD. The polymer coated... 

    Degradation of BTEX in groundwater by nano-CaO2 particles activated with L-cysteine chelated Fe(III): enhancing or inhibiting hydroxyl radical generation

    , Article Water Supply ; Volume 21, Issue 8 , 2021 , Pages 4429-4441 ; 16069749 (ISSN) Sun, X ; Ali, M ; Cui, C ; Lyu, S ; Sharif University of Technology
    IWA Publishing  2021
    The simultaneous oxidation performance of benzene, toluene, ethylbenzene, and xylene (BTEX) by nanoscale calcium peroxide particles (nCaO2) activated with ferric ions (Fe(III)) and the mechanism of the enhancement of BTEX degradation by L-cysteine (L-cys) were investigated. The batch experimental results showed that the nCaO2/Fe(III)/L-cys process was effective in the destruction of BTEX in both ultrapure water and actual groundwater. A proper amount of L-cys could enhance BTEX degradation due to the promotion of Fe(II)/Fe(III) redox cycles by the participation of L-cys, but an excessive presence of L-cys would cause inhibition. Adding 1.0 mM L-cys to the nCaO2/Fe(III) system, the...