Loading...
Search for: maximum-temperature
0.005 seconds

    Effect of size and geometry of gold nanostructures in performance of laser-based hyperthermia: A multiscale- multiphysics modelling

    , Article 3rd International Symposium on Optics and its Applications, 1 October 2015 through 5 October 2015 ; Volume 673, Issue 1 , 2016 ; 17426588 (ISSN) Samadinia, H ; Razaghi, M. R ; Hormozi Nezhad, M ; Rafii Tabar, H ; Sasanpour, P ; Abdus Salam International Center for Theoretical Physics; et al.; International Society for Optics and Photonics (SPIE); Optical Society (OSA); Russian-Armenian (Slavonic) University; TeraTech Laboratory (BMSTU) ; Sharif University of Technology
    Institute of Physics Publishing 
    Abstract
    The importance of hyperthermia as a promising method in disruption and removal of cancerous cells is well understood. One of the effective options of concentration of heat within a specific tissue is using laser and exploiting absorption properties of metallic nanostructures. In this report, the geometrical effect of gold nanostructures in the performance of laser based hyperthermia has been analyzed. The analysis is based on the consideration of absorption properties of gold nanostructures, interaction of laser light with a specific tissue containing nanostructures and the effect of generated heat on elevation of temperature inside the tissue. The analysis is performed using Mie theory (for... 

    Turbine blade cooling passages optimization using reduced conjugate heat transfer methodology

    , Article Applied Thermal Engineering ; Volume 103 , 2016 , Pages 1228-1236 ; 13594311 (ISSN) Mazaheri, K ; Zeinalpour, M ; Bokaei, H. R ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Here we have optimized shape and location of cooling passages of a C3X turbine blade using a multi-objective strategy. The objective functions is selected to be the maximum temperature gradient and the maximum temperature through the three dimensional blade. Shape of cooling channels is modeled using a new method based on the Bezier curves and using forty design variables. The optimized channel shapes are found to be smooth and without corners. To reduce the computational time, parallel processing and the reduced conjugate heat transfer methodology RCHT is used. Using RCHT, the heat transfer between channels and blade are coupled, while the experimental data is used for heat transfer... 

    Synthesis of Bone graft Substitute for Clinical Applications

    , M.Sc. Thesis Sharif University of Technology Khodabakhshi Tabar Ahangar, Zahra (Author) ; Abdekhodaie, Mohammad Jafar (Supervisor)
    Abstract
    The natural tissue of the bones consists of organic and inorganic parts. The bone mineral part contains calcium phosphate and its organic part is mainly of collagen fibers. The combination of these fibers and calcium phosphate makes the bone flexible and resistant to stresses. Many conditions, including osteoporosis and crashes, lead to fractures and cavities in bone. Bone cements are the most used materials used in orthopedic surgeries and spinal cord.The purpose of this study was to synthesis acrylic bone cement with properties determined by ASTM F 451 and Iso5833 for orthopedic applications, including joint replacement. Polymethyl methacrylate polymer was synthesized as the main component... 

    Temperature rise in electroosmotic flow of typical non-newtonian biofluids through rectangular microchannels

    , Article Journal of Heat Transfer ; Volume 136, Issue 3 , March , 2014 ; ISSN: 00221481 Yavari, H ; Sadeghi, A ; Saidi, M. H ; Chakraborty, S ; Sharif University of Technology
    Abstract
    Electroosmosis is the main mechanism for flow generation in lab-on-a-chip (LOC) devices. The temperature rise due to the Joule heating phenomenon, associated with the electroosmosis, may be detrimental for samples being considered in LOCs. Hence, a complete understanding of the heat transfer physics associated with the electroosmotic flow is of high importance in design and active control of LOCs. The objective of the present study is to estimate the temperature rise and the thermal entry length in electroosmotic flow through rectangular microchannels, having potential applications in LOC devices. Along this line, the power-law rheological model is used to account for non-Newtonian behavior... 

    Modeling and experimental study on friction stir welding of artificially aged AA2017 plates

    , Article Materials and Manufacturing Processes ; Volume 28, Issue 6 , 2013 , Pages 683-688 ; 10426914 (ISSN) Mirjalili, A ; Serajzadeh, S ; Jamshidi Aval, H ; Kokabi, A. H ; Sharif University of Technology
    2013
    Abstract
    Thermo-mechanical responses, developed microstructure, and mechanical properties in friction stir welding (FSW) of artificially aged AA2017 plates were investigated. A finite element analysis was first employed to evaluate hot deformation behavior of the alloy during welding. Also, hardness, yield strength, and microstructure of the welded alloy were examined using the results of the model and experimental testing. It was found that strain and temperature fields during welding are asymmetrically distributed and the maximum temperature locates in advancing side. Furthermore, considerable grain refinement is observed in the stir zone where recrystallized grains in the range of 3 to 8 m are... 

    Flow fields investigation and temperature distribution on a rotating disk imposed by a turbulent impinging jet

    , Article 2010 14th International Heat Transfer Conference, IHTC 14, 8 August 2010 through 13 August 2010, Washington, DC ; Volume 5 , 2010 , Pages 719-725 ; 9780791849408 (ISBN) Karrabi, H ; Rasoulipour, S ; Sharif University of Technology
    2010
    Abstract
    Numerical investigation of fluid flow structure and convective heat transfer due to a circular jet impinging on a rotating disk is performed. Temperature and convection heat transfer coefficient are calculated. Flow is considered to be steady, incompressible and turbulent. k-ε RNG model is used to model the turbulent flow. Results are compared with experimental data showing good agreement. Two new criteria are introduced and used to evaluate the performance of cooling process, the first is maximum temperature difference on the disk, and the second is the average temperature of the disk. The first parameter shows the uniformity of temperature distribution in the disk and the second shows the... 

    The effect of strain rate on multi-directional forged aluminum: examining the experimental data and modeling results

    , Article Materials Chemistry and Physics ; Volume 239 , 1 January , 2020 Khamsepour, P ; Kazeminezhad, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this study, multi-directional forging (MDF) as a severe plastic deformation method, annealing, and compression test at different strain rates are applied on pure aluminum. One of the main observations is when the number of MDF passes is increased, the hardness is risen. The most noticeable reduction in hardness occurs when the MDFed samples are annealed at 350 and 450 °C. Moreover, increasing the number of MDF passes and the strain rate of the compression test cause the increase in the yield stress of the samples. If the MDFed samples are non-annealed or if they are annealed at a maximum temperature of 250 °C, the effect of an increase in the number of passes on the yield stress is more... 

    Power-Aware runtime scheduler for mixed-criticality systems on multicore platform

    , Article IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems ; Volume 40, Issue 10 , 2021 , Pages 2009-2023 ; 02780070 (ISSN) Ranjbar, B ; Nguyen, T. D. A ; Ejlali, A ; Kumar, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    In modern multicore mixed-criticality (MC) systems, a rise in peak power consumption due to parallel execution of tasks with maximum frequency, specially in the overload situation, may lead to thermal issues, which may affect the reliability and timeliness of MC systems. Therefore, managing peak power consumption has become imperative in multicore MC systems. In this regard, we propose an online peak power and thermal management heuristic for multicore MC systems. This heuristic reduces the peak power consumption of the system as much as possible during runtime by exploiting dynamic slack and per-cluster dynamic voltage and frequency scaling (DVFS). Specifically, our approach examines... 

    Toward the design of fault-tolerance-and peak-power-aware multi-core mixed-criticality systems

    , Article IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems ; 2021 ; 02780070 (ISSN) Ranjbar, B ; Hosseinghorban, A ; Salehi, M ; Ejlali, A ; Kumar, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    Mixed-Criticality (MC) systems have recently been devised to address the requirements of real-time systems in industrial applications, where the system runs tasks with different criticality levels on a single platform. In some workloads, a highcritically task might overrun and overload the system, or a fault can occur during the execution. However, these systems must be fault-tolerant and guarantee the correct execution of all highcriticality tasks by their deadlines to avoid catastrophic consequences, in any situation. Furthermore, in these MC systems, the peak power consumption of the system may increase, especially in an overload situation and exceed the processor Thermal Design Power... 

    Experimental fatigue lifetime of coated and uncoated aluminum alloy under isothermal and thermo-mechanical loadings

    , Article Ceramics International ; Volume 39, Issue 8 , December , 2013 , Pages 9099-9107 ; 02728842 (ISSN) Azadi, M ; Farrahi, G. H ; Winter, G ; Eichlseder, W ; Sharif University of Technology
    2013
    Abstract
    This paper presents the fatigue lifetime of an aluminum-silicon-magnesium alloy, widely used in diesel engine cylinder heads, both with and without a thermal barrier coating (TBC) system. The coating system in this study consists of two layers including a 150 μm thick metallic bond coat and a zirconium oxide top coat 350 μm thick. These coating layers were applied on the substrate of A356.0 alloy by air plasma thermal spraying. The isothermal fatigue tests were conducted in low cycle fatigue (LCF) regime at various temperatures. Out-of-phase thermo-mechanical fatigue (OP-TMF) tests were also performed at different maximum temperatures and constraint factors. Experimental results demonstrate... 

    Theoretical analysis of polymeric and crystalline thick films melting with a single gold nanoparticle embedded in a transparent matrix under nanosecond pulsed laser excitation

    , Article Journal of Physics D: Applied Physics ; Volume 45, Issue 47 , 2012 ; 00223727 (ISSN) Rahimi, L ; Bahrampour, A. R ; Pepe, G. P ; Sharif University of Technology
    2012
    Abstract
    Optothermal properties of noble metal nanoparticles can be used in a wide range of applications. This paper presents the results of a theoretical study on the utilization of laser-induced heating of a gold nanoparticle (GNP) to melt a region of a transparent material with sub-wavelength spatial resolution. The considered system consists of a 10 or 15nm diameter GNP fixed inside a silica substrate. The silica surface is covered with a thick film of the transparent polymeric or crystalline material. The heating and melting processes are studied under a 7.5ns pulsed laser illumination. Calculations are conducted under three temperature limits, on the maximum temperature of the free electrons,... 

    Prediction and optimization of cure cycle of thick fiber-reinforced composite parts using dynamic artificial neural networks

    , Article Journal of Reinforced Plastics and Composites ; Volume 31, Issue 18 , September , 2012 , Pages 1201-1215 ; 07316844 (ISSN) Jahromi, P. E ; Shojaei, A ; Reza Pishvaie, S. M ; Sharif University of Technology
    2012
    Abstract
    Curing of thermoset-based composites experience substantial temperature overshoot, especially at the center of thick parts and large temperature gradient exists through the whole part due to large amount of heat released and low conductivity of the composite. This leads to non-uniformity of cure, residual stress and consequently composite cracks and possibly degradation of the polymer. The scope of this work is to optimize the cure cycle in order to improve the properties and gaining a relatively uniform part of composite, using trained recurrent artificial neural networks purposed for speeding up the repetitious model re-calls during the optimization process. Numerical results obtained... 

    Effect of welding sequence on residual stress distributions in GTA welding of AA5251 plate

    , Article International Journal of Materials Research ; Volume 103, Issue 3 , 2012 , Pages 371-377 ; 18625282 (ISSN) Kohandehghan, A. R ; Serajzadeh, S ; Sharif University of Technology
    Abstract
    In this paper, a thermo-mechanical model has been used to predict the temperature history and residual stress distribution in gas tungsten arc welding of AA5251 plates. This model has also been utilized to estimate the residual stresses under different welding sequences, while in the model the effect of temperature on material properties were taken into account. In order to verify the predictions, residual stresses within the welded samples and weld pool geometry were experimentally measured employing hole drilling and macro-examination of weld cross-section, respectively. The comparison between numerical and experimental data shows a reasonable agreement. The predictions show that the... 

    Numerical simulation of turbulent heat transfer on a rotating disk with an impinging jet

    , Article ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010, 12 July 2010 through 14 July 2010 ; Volume 2 , 2010 , Pages 627-631 ; 9780791849163 (ISBN) Saidi, M. H ; Karrabi, H ; Avval, H. B ; Asgarshamsi, A ; Sharif University of Technology
    Abstract
    A numerical study has been carried out to investigate the fluid flow structure and convective heat transfer due to a circular jet impinging on a rotating disk. The temperature distribution and convection heat transfer coefficient on the disk are calculated. Flow is considered to be steady, incompressible and turbulent. k-e RNG model is used to model the turbulent flow. Two new criteria are introduced and used to evaluate the performance of cooling process which are maximum temperature difference on the disk and the average temperature of the disk. The first parameter shows the uniformity of temperature distribution in the disk and the second shows the effect of both thermo physical... 

    How important is the liquid bulk viscosity effect on the dynamics of a single cavitation bubble?

    , Article Ultrasonics Sonochemistry ; Volume 49 , 2018 , Pages 47-52 ; 13504177 (ISSN) Nazari Mahroo, H ; Pasandideh, K ; Navid, H. A ; Sadighi Bonabi, R ; Sharif University of Technology
    Abstract
    The influence of liquid bulk viscosity on the dynamics of a single cavitation bubble is numerically studied via Gilmore model with a new modified boundary condition at bubble interface. In order to more accurately describe the interior gas thermodynamics, a hydrochemical model is used. The numerical results for an argon bubble in water and aqueous H2SO4 show that including the liquid bulk viscosity slightly affects the bubble dynamics in collapse phase. This effect becomes significant only at high ultrasonic amplitudes and high viscosities. Moreover, the maximum pressure value inside the bubble is much more influenced than the maximum temperature. This finding lends support to results of... 

    Online peak power and maximum temperature management in multi-core mixed-criticality embedded systems

    , Article 22nd Euromicro Conference on Digital System Design, DSD 2019, 28 August 2019 through 30 August 2019 ; 2019 , Pages 546-553 ; 9781728128610 (ISBN) Ranjbar, B ; Nguyen, T. D. A ; Ejlali, A ; Kumar, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    In this work, we address peak power and maximum temperature in multi-core Mixed-Criticality (MC) systems. In these systems, a rise in peak power consumption may generate more heat beyond the cooling capacity. Additionally, the reliability and timeliness of MC systems may be affected due to excessive temperature. Therefore, managing peak power consumption has become imperative in multi-core MC systems. In this regard, we propose an online peak power management heuristic for multi-core MC systems. This heuristic reduces the peak power consumption of the system as much as possible during runtime by exploiting dynamic slack and Dynamic Voltage and Frequency Scaling (DVFS). Specifically, our... 

    Power-Aware run-time scheduler for mixed-criticality systems on multi-core platform

    , Article IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems ; 2020 Ranjbar, B ; Nguyen, T. D. A ; Ejlali, A ; Kumar, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    In modern multi-core Mixed-Criticality (MC) systems, a rise in peak power consumption due to parallel execution of tasks with maximum frequency, specially in the overload situation, may lead to thermal issues, which may affect the reliability and timeliness of MC systems. Therefore, managing peak power consumption has become imperative in multi-core MC systems. In this regard, we propose an online peak power and thermal management heuristic for multi-core MC systems. This heuristic reduces the peak power consumption of the system as much as possible during runtime by exploiting dynamic slack and per-cluster Dynamic Voltage and Frequency Scaling (DVFS). Specifically, our approach examines... 

    Mold filling simulation in the injection molding process with openFOAM software for non-isothermal newtonian fluid

    , Article Proceedings of the 2nd IASTED Asian Conference on Modelling, Identification, and Control, AsiaMIC 2012 ; 2012 , Pages 291-296 ; 9780889869110 (ISBN) Fazelpour, F ; Vafaeipour, M ; Etemadi, H ; Dabbaghian, A ; Bardestani, R ; Dehghan, M ; Sharif University of Technology
    2012
    Abstract
    Injection molding is one of the most important manufacturing processes for mass production of complex plastic parts. In this study, mold filling is simulated by using the OpenFOAM software for Non- isothermal Newtonian fluid. The OpenFOAM is an open source software that is used in Computational Fluid Dynamics (CFD) tools. The studied mold shape has a rectangular structure with a gate for Newtonian fluid injection. The simulation carried out at non-isothermal conditions and two-dimensional flow is considered. The velocity, shear stress and temperature changes in different parts of the mold are critically studied. We show that vortex formation plays an important role on changes of shear stress... 

    Thermo-mechanical analysis of Roller Compacted Concrete (RCC) dams (Jahgin Dam)

    , Article Proceedings of the Symposium on the Application of Geophyics to Engineering and Environmental Problems, SAGEEP, 29 March 2009 through 2 April 2009, Fort Worth, TX ; Volume 1 , 2009 , Pages 417-427 ; 15548015 (ISSN) ; 9781615670512 (ISBN) Shamsai, A ; Ghaemian, M ; Azimfar, S. M ; Sharif University of Technology
    Abstract
    In this paper a procedure for two-dimensional unsteady thermo-mechanical analysis of layered structures is presented, allowing the determination of the temperature and stress field at each step the construction period. The finite element method is employed in the methodology. Numerical simulation are focused on concrete structures, particularly roller compacted concrete (RCC) dams. A time varying elasticity modulus is introduced in the model. One case study is presented and analysis under different design approaches. Thermal effects must be considered in the process of designing of certain types of concrete structures in order to prevent the damage during either the construction phase (early... 

    Prediction of unmeasurable parameters of NPPs using different model-free methods based on cross-correlation detection of measurable/unmeasurable parameters: a comparative study

    , Article Annals of Nuclear Energy ; Volume 139 , May , 2020 Moshkbar Bakhshayesh, K ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this paper cross-correlation of measurable/unmeasurable parameters of nuclear power plants (NPPs) are detected. Correlation techniques including Pearson's, Spearman's, and Kendall-tau give appropriate input parameters for training/prediction of the target unmeasurable parameters. Fuel and clad maximum temperatures of uncontrolled withdrawal of control rods (UWCR) transient of Bushehr nuclear power plant (BNPP) are used as the case study target parameters. Different model-free methods including decision tree (DT), feed-forward back propagation neural network (FFBPNN) accompany with different learning algorithms (i.e. gradient descent with momentum (GDM), scaled conjugate gradient (SCG),...