Loading...
Search for: mechanism-reduction
0.008 seconds

    Comparison and reduction of the chemical kinetic mechanisms proposed for thermal partial oxidation of methane (TPOX) in porous media

    , Article International Journal of Hydrogen Energy ; Volume 46, Issue 37 , 2021 , Pages 19312-19322 ; 03603199 (ISSN) Fotovat, F ; Rahimpour, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The effectiveness and reducibility of the methane combustion kinetic mechanisms were examined for the TPOX process in a porous medium. To this end, TPOX was successfully simulated using ANSYS CHEMKIN-Pro through a reactor network model composed of perfectly stirred and honeycomb-monolith reactors. The efficacy of six chemical kinetic mechanisms was compared for the equivalence ratios (ERs) ranging from 2.4 to 2.6 with a constant thermal load of 1540 kW/m2. This comparison revealed that Konnov was the most successful mechanism in the prediction of the H2 and CO mole fractions. This mechanism along with the GRI-3.0 and USC-Mech 2.0 mechanisms were then reduced by the direct relation graph with... 

    Kinetic Study of Partial Oxidation of Methane in Non-Catalytic Porous Media

    , M.Sc. Thesis Sharif University of Technology Rahimpour Kalkhoran, Mehrnaz (Author) ; Fotovat, Farzam (Supervisor) ; Soltanieh, Mohammad (Supervisor)
    Abstract
    Partial oxidation of methane (POX) is one of the most common processes to produce synthesis gas. In this study the kinetics of this process is examined and some reduced mechanisms are introduced to model it in this study. The experimental data from Research Institute of Petroleum Industry are used as reference experimental data. Inlets of this reactor are oxygen and methane with equivalence ratio between 2.53 and 2.9. Moreover, the experimental results of previous studies with the air as the oxidant in equivalence ration between 2.4 and 2.6 are used as basis for comparison of simulation results. During the first step, partial oxidation of methane in non-catalytic porous media is simulated by...