Loading...
Search for: mechanochemicals
0.006 seconds

    Simple solid state synthesis of nanostructured Ag6Mo10O33 and ni- substituted Ag6Mo10O33 polyoxometalates with photocatalytic characteristic

    , Article Iranian Journal of Materials Science and Engineering ; Volume 14, Issue 3 , 2017 , Pages 48-53 ; 17350808 (ISSN) Tadjarodi, A ; Imani, M ; Irajizad, A ; Sharif University of Technology
    Abstract
    In this work, we report the synthesis of silver decamolybdate, Ag6Mo10O33, nanostructure by a simple mechanochemical process followed by calcination treatment using acetamide as driving agent. Morphological study by scanning electron microscopy (SEM) images revealed bundles of rods grown closely together with an average diameter of 92 nm for Ag6Mo10O33 sample. Ni-substituted Ag6Mo10O33 compound was prepared via introducing nickel cation to precursor system in mechanical milling step. The particle size decreased to 87 nm by incorporating nickel units in substituted polymolybdate. It was concluded that the suitable selection of reagents can direct solid phase reaction towards producing... 

    Synthesis, characterization and studies of mechanochemical, electrochemical, and thermal behavior of electronegative oxovanadium(IV) Schiff-base complexes

    , Article Journal of Coordination Chemistry ; Volume 62, Issue 7 , 2009 , Pages 1127-1133 ; 00958972 (ISSN) Bezaatpour, A ; Behzad, M ; Boghaei, D. M ; Sharif University of Technology
    2009
    Abstract
    This article describes the synthesis and characterization of electronegative oxovanadium(IV) complexes containing tetradentate Schiff-base ligands derived from condensation of 1,3-propanediamine and 1,8-naphthylamine with 5-bromo-3-nitro-2-hydroxybenzaldehyde. New VOL1: [VO(5-Br-3-NO2salnaph)] and VOL2: [VO(5-Br-3-NO2salpn)] complexes were obtained in orange polymeric form with (V=O) stretching bands at 884 and 876 cm-1, respectively. The orange VOL1 and VOL2 complexes turn dark brown and green, respectively, when ground thoroughly in mortars. X-ray powder diffraction patterns of the ground VOL1 complex (VOL1g) scarcely show diffraction peaks. The data suggest that the linear chain polymeric... 

    Mechanochemically prepared BiOCl nanoplates for removal of rhodamine B and pentachlorophenol

    , Article Monatshefte fur Chemie ; Volume 147, Issue 4 , 2016 , Pages 685-696 ; 00269247 (ISSN) Tadjarodi, A ; Akhavan, O ; Bijanzad, K ; Moghaddasi Khiavi, M ; Sharif University of Technology
    Abstract
    BiOCl was synthesized using bismuth nitrate pentahydrate and sodium chloride via ball milling for 15 (B15), 30 (B30), and 60 (B60) min. Scanning electron microscopy studies revealed the isolated nanoplate morphology for B15, an aggregated structure composed of nanoplates for B30, and a special three-dimensional morphology for B60. The X-ray diffraction patterns showed the purity and crystallinity of the products improved by increasing the milling time. Fourier transform infrared spectroscopy, photoluminescence spectroscopy, and nitrogen adsorption-desorption analysis using the Brunauer-Emmett-Teller technique were also used to study the products. Diffuse reflectance spectroscopy studies... 

    Synthesis of nanosize single-crystal hydroxyapatite via mechanochemical method

    , Article Materials Letters ; Volume 63, Issue 5 , 2009 , Pages 543-546 ; 0167577X (ISSN) Nasiri Tabrizi, B ; Honarmandi, P ; Ebrahimi Kahrizsangi, R ; Honarmandi, P ; Sharif University of Technology
    2009
    Abstract
    Single-crystal hydroxyapatite (HAp) nanorods and nanogranules have been synthesized successfully by a mechanochemical process using two distinct experimental procedures. The experimental outcomes are characterized by transmission electron microscopy (TEM), and powder X-ray diffraction (XRD) techniques. In this work, the feasibility of using polymeric milling media to prepare hydroxyapatite nanoparticles is described. The resulting hydroxyapatite powder exhibits an average size of about 20 to 23 nm. Final results indicate that the proposed synthesis strategy provides a facile pathway to obtain single-crystal HAp with high quality and suitable morphology. © 2008 Elsevier B.V. All rights... 

    Morphology and magnetic properties of FeCo nanocrystalline powder produced by modified mechanochemical procedure

    , Article Journal of Magnetism and Magnetic Materials ; Volume 322, Issue 21 , 2010 , Pages 3551-3554 ; 03048853 (ISSN) Azizi, A ; Sadrnezhaad, S. K ; Hasani, A ; Sharif University of Technology
    2010
    Abstract
    Properties of FeCo nanocrystalline intermetallic powders prepared by salt-matrix hydrogen reduction of a milled Fe 2O 3-Co 3O 4 mixture were investigated. The product of 72 ks ball-milling at 350 rpm was CoFe 2O 4 nanopowder. Reduction of this powder for 3.6 ks by hydrogen at 750 °C resulted in the formation of Fe 0.67Co 0.33 stoichiometric compound. Scanning electron microscopy, electron dispersive spectrometry, X-ray diffraction and vibrating sample magnetometry were used to characterize the nanopowder. Using a salt-matrix (NaCl as a dispersion medium) resulted in the decrease of the reduction temperature and improvement of the morphology and magnetic properties of the nanopowder.... 

    Mechanism of nanostructured fluorapatite formation from CaO, CaF2 and P2O5 precursors by mechanochemical synthesis

    , Article Progress in Reaction Kinetics and Mechanism ; Volume 43, Issue 3-4 , 2018 , Pages 201-210 ; 14686783 (ISSN) Nikonam Mofrad,, R ; Sadrnezhaad, S. K ; Vahdati Khaki, J ; Sharif University of Technology
    Science Reviews 2000 Ltd  2018
    Abstract
    We determined the mechanism of mechanochemical synthesis of fluorapatite from CaO, CaF2 and P2O5 by characterisation of the intermediate compounds. We used atomic absorption spectroscopy, X-ray diffraction, field emission scanning electron microscopy, FTIR spectroscopy and transmission electron microscopy to find the transitional compounds. Investigation of the binary and ternary powder mixtures revealed the appearance of H3PO4, Ca(OH)2, Ca2P2O7 and CaCO3 as the intermediate compounds. At early stages of the milling, conversions of P2O5 to H3PO4 and CaO to Ca(OH)2 occurred in the wet atmosphere. Later, a combination of Ca(OH)2 and H3PO4 formed Ca2P2O7 while the unreacted CaO was converted to... 

    Mechanochemical Synthesis of Copper Doped Nanostructured Fluorapatite

    , M.Sc. Thesis Sharif University of Technology Nikonam Mofrad, Raheleh (Author) ; Sadrnezhad, Khatiboleslam (Supervisor) ; Vahdati Khaki, Jalil (Co-Advisor)
    Abstract
    Fluorapatite (FA) has been widely used on orthopedic and dentistry prosthesis due to its excellent bioactivity properties. Therefore, the aim of this work is to prepare and characterize copper doped nanostructured fluorapatite powder via mechanical alloying (MA) method using a high energy planetary ball mill.FA powder samples with the general chemical formula Cux.Ca(10-x).(PO4)6.F2 (where x is the ratio of substitution of Cu-2 by F−1) are successfully synthesized using the starting materials of calcium oxide (CaO), phosphorous pentoxide (P2O5), calcium fluoride (CaF2), and copper (II) oxide (CuO) powders under various milling times. In order to evaluate the antibacterial effect of copper,... 

    Sintering of Molybdenum Disilicide Produced by Mechano-Chemical Process

    , M.Sc. Thesis Sharif University of Technology Moosapour Siahkalroudi, Zahra (Author) ; Yoozbashizadeh, Hossein (Supervisor)
    Abstract
    Molybdenum disilicide is an intermetallic compound in Mo-Si binary system that is appropriate to use at high temperatures. Because of its special properties such as high melting point, oxidation resistance, good electrical resistivity and thermal conductivity, this material can be used in high temperatures applications such as gas turbines, heat shield and tiles. High melting point of MoSi2 limits the fabrication of this compound by conventional methods. Nowadays modern techniques such as mechanical alloying are being used for synthesis of Molybdenum disilicide. The objective of this study is to investigate the effects of sintering time and temperature on the mechanical and electrical... 

    Low-Reynolds-number predator

    , Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Volume 92, Issue 6 , December , 2015 ; 15393755 (ISSN) Ebrahimian, M ; Yekehzare, M ; Ejtehadi, M. R ; Sharif University of Technology
    American Physical Society  2015
    Abstract
    To generalize simple bead-linker model of swimmers to higher dimensions and to demonstrate the chemotaxis ability of such swimmers, here we introduce a low-Reynolds predator, using a two-dimensional triangular bead-spring model. Two-state linkers as mechanochemical enzymes expand as a result of interaction with particular activator substances in the environment, causing the whole body to translate and rotate. The concentration of the chemical stimulator controls expansion versus the contraction rate of each arm and so affects the ability of the body for diffusive movements; also the variation of activator substance's concentration in the environment breaks the symmetry of linkers' preferred... 

    Mixed ammonium silver phosphomolybdate salt nanostructures; solid state synthesis, characterization of driving agent role and photocatalytic property

    , Article Materials Letters ; Volume 161 , December , 2015 , Pages 464-467 ; 0167577X (ISSN) Tadjarodi, A ; Iraji Zad, A ; Imani, M ; Sharif University of Technology
    Elsevier  2015
    Abstract
    A green mechanochemical technique has been developed for the synthesis of mixed ammonium silver phosphomolybdate salt, (NH4)1.6Ag1.4PMo12O40.4H2O with sheet-like nanostructure. The reaction was prompted using acetamide/NH4NO3 at room temperature. The change of driving agent to urea at the same conditions led to an epitaxial growth of hierarchical microstructure of this polyoxoanion. The morphological and structural features of the prepared specimens were discussed in detail. The photocatalytic performance of the resulting nanosheets for removing 4-nitrophenol (4-NP) in water under visible light... 

    Milling media effects on synthesis, morphology and structural characteristics of single crystal hydroxyapatite nanoparticles

    , Article Advances in Applied Ceramics ; Volume 109, Issue 2 , 2010 , Pages 117-122 ; 17436753 (ISSN) Honarmandi, P ; Honarmandi, P ; Shokuhfar, A ; Nasiri Tabrizi, B ; Ebrahimi Kahrizsangi, R ; Sharif University of Technology
    2010
    Abstract
    This paper presents a dry mechanochemical process to produce hydroxyapatite (HAp) nanoparticles. Two distinct chemical reactions are introduced to prepare HAp powders using milling process. Structural and morphological properties of the obtained materials are studied by X-ray diffraction and transmission electron microscopy. The results reveal that the single crystal HAp nanoparticles have been successfully produced in metallic and polymeric vials through two different experimental procedures. Tempered chrome steel and polyamide-6 materials are adopted as the metallic and polymeric vials respectively. Nanoellipse, nanorod and nanosphere powders are obtained in these experimental procedures.... 

    Optimal control of rotary motors

    , Article Physical Review E ; Volume 99, Issue 1 , 2019 ; 24700045 (ISSN) Lucero, J. N. E ; Mehdizadeh, A ; Sivak, D. A ; Sharif University of Technology
    American Physical Society  2019
    Abstract
    Single-molecule experiments have found near-perfect thermodynamic efficiency in the rotary motor F1-ATP synthase. To help elucidate the principles underlying nonequilibrium energetic efficiency in such stochastic machines, we investigate driving protocols that minimize dissipation near equilibrium in a simple model rotary mechanochemical motor, as determined by a generalized friction coefficient. Our simple model has a periodic friction coefficient that peaks near system energy barriers. This implies a minimum-dissipation protocol that proceeds rapidly when the system is overwhelmingly in a single macrostate but slows significantly near energy barriers, thereby harnessing thermal... 

    Metal–organic frameworks (MOFs) for cancer therapy

    , Article Materials ; Volume 14, Issue 23 , 2021 ; 19961944 (ISSN) Saeb, M. R ; Rabiee, N ; Mozafari, M ; Verpoort, F ; Voskressensky, L. G ; Luque, R ; Sharif University of Technology
    MDPI  2021
    Abstract
    MOFs exhibit inherent extraordinary features for diverse applications ranging from cataly-sis, storage, and optics to chemosensory and biomedical science and technology. Several procedures including solvothermal, hydrothermal, mechanochemical, electrochemical, and ultrasound techniques have been used to synthesize MOFs with tailored features. A continued attempt has also been directed towards functionalizing MOFs via “post-synthetic modification” mainly by changing linkers (by altering the type, length, functionality, and charge of the linkers) or node components within the MOF framework. Additionally, efforts are aimed towards manipulating the size and morphology of crystallite domains in... 

    An investigation on the influence of milling time and calcination temperature on the characterization of nano cerium oxide powder synthesized by mechanochemical route

    , Article Materials Research Bulletin ; Volume 47, Issue 11 , 2012 , Pages 3586-3591 ; 00255408 (ISSN) Aminzare, M ; Amoozegar, Z ; Sadrnezhaad, S. K ; Sharif University of Technology
    2012
    Abstract
    The synthesis of nano-sized CeO 2 powder was investigated via mechanochemical reactions between hydrate cerium chloride and sodium hydroxide as the starting materials. The process was followed by a subsequent calcination procedure. Characterization of as-synthesized powder was performed using X-ray diffraction, FTIR spectroscopy, Brunner-Emmett-Teller (BET) nitrogen gas absorption, scanning electron microscopy (SEM) and particle size analyzer (PSA). The precursors were milled for different milling times and then were subjected to different heat treatment procedure at variable temperatures from 100 to 700 °C. According to the results, milling time and calcination temperatures induce... 

    Investigation on the characteristics of micro- and nano-structured W-15 wt.%Cu composites prepared by powder metallurgy route

    , Article International Journal of Refractory Metals and Hard Materials ; Volume 30, Issue 1 , 2012 , Pages 145-151 ; 02634368 (ISSN) Abbaszadeh, H ; Masoudi, A ; Safabinesh, H ; Takestani, M ; Sharif University of Technology
    2012
    Abstract
    The properties of W-15 wt.%Cu composites were investigated by preparing two distinct composites of micrometer and nanoscale structures. Micrometer composite was produced by mixing elemental W and Cu powders and nanometer one was synthesized through a mechanochemical reaction between WO3 and CuO powders. Subsequent compaction and sintering process was performed to ensure maximum possible densification at 1000-1200 °C temperatures. Finally, the behavior of produced samples including relative density, hardness, compressive strength, electrical conductivity, coefficient of thermal expansion (CTE) and room temperature corrosion resistance were examined. Among the composites, nano-structured... 

    Solid state preparation and photocatalytic activity of bismuth oxybromide nanoplates

    , Article Research on Chemical Intermediates ; Volume 42, Issue 3 , 2016 , Pages 2429-2447 ; 09226168 (ISSN) Bijanzad, K ; Tadjarodi, A ; Akhavan, O ; Moghaddasi Khiavi, M ; Sharif University of Technology
    Springer Netherlands  2016
    Abstract
    A mechanochemical method was applied to prepare bismuth oxybromide (BiOBr) nanoplates using bismuth nitrate pentahydrate and potassium bromide for 15 (A15), 30 (A30) and 60 (A60) minutes. Scanning electron microscopy studies showed that all the products were comprised of nanoplates. Aggregated nanoplates along with microblocks were observed for A15 and A30 and the entire morphology was not homogenous. The morphology of A60 was uniform and consisted of thin and isolated nanoplates. Evaluation of the X-ray diffraction patterns showed that the purity and crystallinity of the products improved by increasing the milling time. The energy dispersive X-ray analysis confirmed the high purity of the... 

    Mechano-chemical AFM nanolithography of metallic thin films: A statistical analysis

    , Article Current Applied Physics ; Volume 10, Issue 4 , 2010 , Pages 1203-1210 ; 15671739 (ISSN) Akhavan, O ; Abdolahad, M ; Sharif University of Technology
    2010
    Abstract
    A mechano-chemical atomic force microscope (AFM) nanolithography on a metallic thin film (50 nm in thickness) covered by a spin-coated soft polymeric mask layer (50-60 nm in thickness) has been introduced. The surface stochastic properties of initial grooves mechanically patterned on the mask layer (grooves before chemical wet-etching) and the lithographed patterns on the metallic thin film (the grooves after chemical wet-etching) have been investigated and compared by using the structure factor, power spectral density, and AFM tip deconvolution analyses. The effective shape of cross section of the before and after etching grooves have been determined by using the tip deconvolution surface... 

    Antibacterial activity of ultra-small copper oxide (II) nanoparticles synthesized by mechanochemical processing against S. aureus and E. coli

    , Article Materials Science and Engineering C ; Volume 105 , 2019 ; 09284931 (ISSN) Moniri Javadhesari, S ; Alipour, S ; Mohammadnejad, S ; Akbarpour, M. R ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    In this paper, ultra-small CuO nanoparticles (NPs) were synthesized through a mechanochemical method using two different Cu-containing precursors (i.e. CuSO4·5H2O and CuCl2·2H2O), and their structure and antibacterial activity were studied. From the microstructural studies, it was observed that CuO NPs have a spherical morphology and a narrow size distribution with 7 and 14 nm median particle sizes for CuCl2·2H2O and CuSO4.5H2O precursors, respectively. The CuCl2·2H2O derived nanoparticles showed more antibacterial activity than CuSO4.5H2O derived nanoparticles. The minimum inhibitory concentration (MIC) of the synthesized nanoparticles (derived from both precursors) against E. coli and... 

    Fe 50Co 50 nanoparticles via self-propagating high-temperature synthesis during milling

    , Article Powder Technology ; Volume 208, Issue 3 , 2011 , Pages 623-627 ; 00325910 (ISSN) Azizi, A ; Yourdkhani, A ; Koohestani, H ; Sadrnezhaad, S. K ; Asmatulu, R ; Sharif University of Technology
    Abstract
    Self-propagating exothermic reactions during mechanical milling of FeCl 3/CoCl 2 mixture together with sodium seeds resulted in formation of Fe 50Co 50 nanoparticles. Highly exothermic reactions resulted in temperature raise and formation of Fe 50Co 50 phase within the first 5min; however Fe 50Co 50 single-phase was obtained after 30min of milling. The products were characterized by XRD, SEM, EDS, TEM and VSM. Obtained results showed that both milling time and NaCl salt matrix affected the size, morphology, microstructure and magnetic properties of the produced particles