Loading...
Search for: medical-engineering
0.007 seconds

    Particles focusing and separation by a novel inertial microfluidic device: divergent serpentine microchannel

    , Article Industrial and Engineering Chemistry Research ; Volume 61, Issue 38 , 2022 , Pages 14324-14333 ; 08885885 (ISSN) Amani, A ; Shamloo, A ; Vatani, P ; Ebrahimi, S ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    Microfluidic experiments have found wide applications in medical sciences and engineering, such as cell separation and focusing. In the present study, focusing and separation of particles with different sizes and densities were investigated by designing inertial microfluidic devices. The microfluidic channel is designed by analyzing the induced forces on the particles. In the designing process, the objective was to focus and separate the particles in the shortest length of the channel with the lowest possible cycles and high efficiency. The simulation is then used for analyzing the two proposed geometries to evaluate their particle separation and focusing ability, named convergent and... 

    ECG denoising using modulus maxima of wavelet transform

    , Article Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009, 2 September 2009 through 6 September 2009, Minneapolis, MN ; 2009 , Pages 416-419 ; 9781424432967 (ISBN) Ayat, M ; Shamsollahi, M. B ; Mozaffari, B ; Kharabian, S ; Sharif University of Technology
    Abstract
    ECG denoising has always been an important issue in medical engineering. The purposes of denoising are reducing noise level and improving signal to noise ratio (SNR) without distorting the signal. This paper proposes a method for removing white Gaussian noise from ECG signals. The concepts of singularity and local maxima of the wavelet transform modulus were used for analyzing singularity and reconstructing the ECG signal. Adaptive thresholding was used to remove white Gaussian noise modulus maximum of wavelet transform and then reconstruct the signal. ©2009 IEEE