Loading...
Search for: medium-voltage
0.005 seconds

    A linear AC power flow model for unbalanced multi-phase distribution networks based on current injection equations

    , Article IEEE Transactions on Power Systems ; Volume 36, Issue 4 , 2021 , Pages 3806-3809 ; 08858950 (ISSN) Heidari-Akhijahani, A ; Safdarian, A ; Vrakopoulou, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    A realistic and practicable modeling of unbalanced distribution networks (DNs) is the missing link in most studies undertaken in these networks, e.g., optimal power flow (OPF), energy markets, etc. To address the issue, this letter proposes an unbalanced linear three-phase four-wire power flow (PF) model based on current injection equations at nodes. Also, the ZIP representation is considered for loads. The model can be easily generalized for unbalanced three-wire networks with minor changes and assumptions. Hence, the scope of the proposed method can be extended to cover both low-voltage and medium-voltage DNs. The performance of the proposed model is verified through simulations on two... 

    Performance evaluation of hybrid transfer switches in grounded and ungrounded medium-voltage electrical systems

    , Article CIGRE/IEEE PES International Symposium Quality and Security of Electric Power Delivery Systems, CIGRE/PES 2003, 8 October 2003 through 10 October 2003 ; 2003 , Pages 91-96 ; 2858730156 (ISBN); 9782858730155 (ISBN) Yasaman, H ; Mokhtari, H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2003
    Abstract
    Application of a fast hybrid transfer switch (HTS) as a suitable tool for protection of sensitive electrical loads against power quality problems has attracted much attentions these days. In this paper, methods for desired control of a HTS which consists of a fast fault-detection method and a suitable firing and transfer strategy are proposed. Simulation results of a HTS under various operating conditions for two types of medium-voltage electrical systems, i.e. grounded (star connection) and ungrounded (delta connection) systems, with respect to total transfer time are presented. The results show the capability of the HTS and the proposed control methods in fast transferring of sensitive... 

    Control of a microgrid with unbalanced loads using virtual negative-sequence impedance loop

    , Article PEDSTC 2014 - 5th Annual International Power Electronics, Drive Systems and Technologies Conference ; 2014 , p. 78-83 Hamzeh, M ; Karimi, H ; Mokhtari, H ; Mahseredjian, J ; Sharif University of Technology
    Abstract
    This paper presents an effective control strategy for autonomous operation of a multi-bus medium voltage (MV) microgrid (MG) consisting of several dispatchable distributed generation (DG) units. Each electronically-coupled DG unit supplies the loads which can be unbalanced due to the inclusion of single-phase loads. The proportional resonance (PR) and droop controllers are, respectively, used to regulate the load voltage and share the average powers among the DG units. The virtual negative-sequence impedance controller (VNSIC) is proposed to effectively compensate the negative-sequence currents of the unbalanced loads. Moreover, the VNSIC minimizes the negative-sequence currents in the MV... 

    Finding assignable cause in medium voltage network by statistical process control

    , Article IET Conference Publications ; Volume 2013, Issue 615 CP , 2013 ; 9781849197328 (ISBN) Eini, B. J ; Mirzavand, M ; Mahdloo, F ; Sharif University of Technology
    2013
    Abstract
    The current of outgoing feeders are very important data transmitted over SCADA system. Monitoring of these currents can help dispatching engineers to detect abnormality in energy consumption trend and minor faults in distribution network. Statistical process control (SPC) is one of the capable approaches which can be used for this purpose. Statistical process control is based on categorizing variations into assignable causes and random causes. In current paper we described the methods which were used for finding assignable causes in load trend and short time load variation in Alborz province power distribution company pilot project. Although this approach is not developed completely and some... 

    A new decentralized voltage control scheme of an autonomous microgrid under unbalanced and nonlinear load conditions

    , Article Proceedings of the IEEE International Conference on Industrial Technology ; February , 2013 , Pages 1812-1817 ; 9781467345699 (ISBN) Paridari, K ; Hamzeh, M ; Emamian, S ; Karimi, H ; Bakhshai, A ; Sharif University of Technology
    2013
    Abstract
    This paper presents an effective voltage control strategy for the autonomous operation of a medium voltage (MV) microgrid under nonlinear and unbalanced load conditions. The main objectives of this strategy are to effectively compensate the harmonic and negative-sequence currents of nonlinear and unbalanced loads using distributed generation (DG) units. The proposed control strategy consists of a multi-proportional resonant controller (MPRC) whose parameters are assigned with particle swarm optimization (PSO) algorithm. The optimization function is defined to minimize the tracking error at the specific harmonics considering the stability limitations. In this paper the performance of the... 

    A new control strategy for a multi-bus MV microgrid under unbalanced conditions

    , Article IEEE Transactions on Power Systems ; Volume 27, Issue 4 , 2012 , Pages 2225-2232 ; 08858950 (ISSN) Hamzeh, M ; Karimi, H ; Mokhtari, H ; Sharif University of Technology
    2012
    Abstract
    This paper proposes a new control strategy for the islanded operation of a multi-bus medium voltage (MV) microgrid. The microgrid consists of several dispatchable electronically-coupled distributed generation (DG) units. Each DG unit supplies a local load which can be unbalanced due to the inclusion of single-phase loads. The proposed control strategy of each DG comprises a proportional resonance (PR) controller with an adjustable resonance frequency, a droop control strategy, and a negative-sequence impedance controller (NSIC). The PR and droop controllers are, respectively, used to regulate the load voltage and share the average power components among the DG units. The NSIC is used to... 

    A new power management control strategy for a MV microgrid with both synchronous generator and inverter-interfaced distributed energy resources

    , Article IEEE International Symposium on Industrial Electronics ; 1- 4 June , 2014 , pp. 2529-2534 ; ISBN: 978-147992399-1 Zangeneh, M ; Hamzeh, M ; Mokhtari, H ; Karimi, H ; Sharif University of Technology
    Abstract
    Control strategies of a microgrid which includes both synchronous generators and converter-based distribution generation (DG) units must be designed such that effective operation of the microgrid is achieved. The main objective of this paper is to develop a high performance control strategy for an islanded medium voltage (MV) microgrid consisting of inverter and non-inverter interfaced DG units. A new control method for the synchronous generator in an islanded microgrid is proposed based on a virtual droop scheme. The proposed strategy can effectively manage the real and reactive powers of the microgrid among the inverter and non-inverter based DG units. The steady state and dynamic... 

    Guest editorial special section on microgrids

    , Article IEEE Transactions on Smart Grid ; Volume 3, Issue 4 , December , 2012 , Pages 1857-1859 ; 19493053 (ISSN) Fotuhi Firuzabad, M ; Iravani, R ; Aminifar, F ; Hatziargyriou, N ; Lehtonen, M ; Sharif University of Technology
    Abstract
    Despite the significant research efforts devoted to the microgrid and smart grid areas, numerous problems related to real world implementations still remain unsolved. The present special issue was announced with the objective of addressing and disseminating state-of-the-art R&D results on microgrids to bring together researchers from both academia and industry with the goal of fostering interactions among stakeholders. In response, 190 two-page extended abstracts were received and considered for the first round of reviews. Authors of about 60 selected abstracts were then invited to submit the full papers in the second round and out of them 27 high-quality manuscripts were ultimately approved... 

    Active power management of multihybrid fuel cell/supercapacitor power conversion system in a medium voltage microgrid

    , Article IEEE Transactions on Smart Grid ; Volume 3, Issue 4 , 2012 , Pages 1903-1910 ; 19493053 (ISSN) Ghazanfari, A ; Hamzeh, M ; Mokhtari, H ; Karimi, H ; Sharif University of Technology
    2012
    Abstract
    This paper proposes a hierarchical active power management strategy for a medium voltage (MV) islanded microgrid including a multihybrid power conversion system (MHPCS). To guarantee excellent power management, a modular power conversion system is realized by parallel connection of small MHPCS units. The hybrid system includes fuel cells (FC) as main and supercapacitors (SC) as complementary power sources. The SC energy storage compensates the slow transient response of the FC stack and supports the FC to meet the grid power demand. The proposed control strategy of the MHPCS comprises three control loops; dc-link voltage controller, power management controller, and load current sharing...