Loading...
Search for: melting-rate
0.021 seconds

    A new method to control heat and mass transfer to work piece in a GMAW process

    , Article Journal of Process Control ; Volume 22, Issue 6 , 2012 , Pages 1087-1102 ; 09591524 (ISSN) Mousavi Anzehaee, M ; Haeri, M ; Sharif University of Technology
    2012
    Abstract
    It is proposed to employ melting rate, heat input, and detaching droplet diameter as controlled variables to control heat and mass transfer to work piece in a gas metal arc welding process. A two-layer architecture with cascade configuration of PI and MPC controllers is implemented to incorporate existing constraints on the process variables, improve transient behavior of the closed-loop responses and reduce interaction level. Computer simulation results are presented to indicate usefulness of the proposed controlled variables selection and applying two-layer control architecture to control heat and mass transfer to work piece  

    A computational model for heat transfer coefficient estimation in electric arc furnace

    , Article Steel Research International ; Volume 87, Issue 3 , 2016 , Pages 330-338 ; 16113683 (ISSN) Logar, V ; Fathi, A ; Škrjanc, I ; Sharif University of Technology
    Wiley-VCH Verlag  2016
    Abstract
    The paper studies the effects of solid and liquid steel properties on the heat transfer coefficient (HTC) in electric arc furnaces (EAFs). Mathematically speaking, the HTC is a function of solid and liquid steel properties. Different velocities of the bath cause different flow paths around the solid particles and therefore different HTCs - a computational issue that has not been addressed yet. Therefore, a simplified calculation model is proposed, intended for HTC estimation according to the EAF conditions. Although many studies investigated this topic, most of them either assume unconventional conditions for the EAF operation, are computationally complex or focus on a specific case; and...