Loading...
Search for: membrane-gas-separation
0.011 seconds

    The effect of ethane on the performance of commercial polyphenylene oxide and cardo-type polyimide hollow fiber membranes in CO 2/CH 4 separation applications

    , Article Korean Journal of Chemical Engineering ; Volume 27, Issue 6 , 2010 , Pages 1876-1881 ; 02561115 (ISSN) Chenar, M. P ; Savoji, H ; Soltanieh, M ; Matsuura, T ; Tabe, S ; Sharif University of Technology
    2010
    Abstract
    Impurities such as hydrogen sulfide, water vapor and heavy hydrocarbons in natural gas have considerable effects on the membrane performance. Small amounts of condensable and polymer soluble components in the feed gas cause swelling or plasticization of glassy membranes, leading to a reduction in membrane selectivity. In the present research the influence of ethane was investigated on the permeance and selectivity of two commercially available hollow fiber membranes, namely Cardo-type polyimide and PPO hollow fibers for CO 2/CH 4 separations. It was concluded that the gas mixture permeation rate was increased in the presence of C 2H 6. However, the CO 2/CH 4 separation factors remained... 

    Gas permeation properties of commercial polyphenylene oxide and Cardo-type polyimide hollow fiber membranes

    , Article Separation and Purification Technology ; Volume 51, Issue 3 , 2006 , Pages 359-366 ; 13835866 (ISSN) Pourafshari Chenar, M ; Soltanieh, M ; Matsuura, T ; Tabe Mohammadi, A ; Feng, C ; Sharif University of Technology
    2006
    Abstract
    Gas separation properties of commercially available polyphenylene oxide (PPO) and Cardo-type polyimide (PI) hollow fiber membranes were investigated by CO2/CH4 and O2/N2 separation experiments. The pure gas permeation and the mixed gas separation experiments indicated that the two hollow fiber membranes were suitable candidates for O2/N2 and CO2/CH4 separations. Average O2/N2 permselectivities of 3.9 and 5.7 for PPO and PI hollow fibers, respectively, average CO2/CH4 permselectivities of 16.4 and 36.0 for PPO and PI hollow fibers, respectively, CO2 permeances of 210 and 110 GPU at 100 psig for PPO and PI hollow fibers, and O2 permeances of 40 GPU and 15 GPU for PPO and PI hollow fibers were... 

    Effect of alumina on the performance and characterization of cross-linked PVA/PEG 600 blended membranes for CO2/N2 separation

    , Article Separation and Purification Technology ; Volume 210 , 2019 , Pages 627-635 ; 13835866 (ISSN) Dilshad, M. R ; Islam, A ; Hamidullah, U ; Jamshaid, F ; Ahmad, A ; Zahid Butt, M. T ; Ijaz, A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this work, poly(vinyl) alcohol (PVA)/poly(ethylene) glycol (PEG) 600 g/mol cross-linked membranes with different alumina (Al2O3) content were synthesized. The membranes were then characterized by FTIR, TGA, DSC, SEM, mechanical strength and permeation properties for carbon dioxide and nitrogen gases at different operating temperatures. The FTIR results confirmed the acetal linkages of cross-linking at 1083 cm−1 and the presence of stretching and bending peaks of Al-O bond at 598 and 444 cm−1, respectively. TGA results showed that the thermal stabilities of the membranes improved with the addition of alumina particles. DSC analysis proved that the glass transition temperature of the... 

    Improvement in CO2/H2 separation by fabrication of poly(ether-b-amide6)/glycerol triacetate gel membranes

    , Article Journal of Membrane Science ; Vol. 469, issue , 2014 , pp. 43-58 ; ISSN: 03767388 Rabiee, H ; Soltanieh, M ; Mousavi, S. A ; Ghadimi, A ; Sharif University of Technology
    Abstract
    The purpose of this study is to investigate separation performance of poly(ether-b-amide6) (Pebax1657)/glycerol triacetate (GTA) gel membranes for CO2 removal from H2, N2 and CH4. GTA as a low molecular weight and highly CO2-phill compound was added to membrane structure at various weight fractions, 20%, 40%, 60% and 80% of Pebax, to fabricate a new high solubility selective membrane with improved performance. Permeation of pure gases was studied at different temperatures from 25 to 65°C and pressures from 4 to 24bar and ideal selectivities were calculated. Results indicated enhancement in permeation for all tested gases. For example, at a pressure of 4bar and a temperature of 25°C, membrane... 

    Novel surface modifying macromolecules (SMMs) blended polysulfone gas separation membranes by phase inversion technique

    , Article Journal of Applied Polymer Science ; Volume 124, Issue 3 , 2012 , Pages 2287-2299 ; 00218995 (ISSN) Savoji, H ; Rana, D ; Matsuura, T ; Soltanieh, M ; Tabe, S ; Sharif University of Technology
    2012
    Abstract
    In this article an attempt was made to fabricate defect-free asymmetric polysulfone (PSf) membranes for the separation of oxygen and nitrogen. The approach is based on the enhanced delayed demixing by blending surface modifying macromolecules (SMMs) in the casting solution and by immersing the cast film in isopropanol for a certain period before it is immersed in water. Different SMMs, including hydrophobic and charged SMMs, were synthesized, characterized, and blended to the host PSf. It was found that the charged SMM could indeed contribute to the removal of defective pores from the skin layer and enhancement of oxygen/nitrogen selectivity. The experimental results were further interpreted... 

    Gas permeation and sorption properties of poly(amide-12-b-ethyleneoxide)(Pebax1074)/SAPO-34 mixed matrix membrane for CO2/CH4 and CO2/N2 separation

    , Article Journal of Industrial and Engineering Chemistry ; Volume 27 , July , 2015 , Pages 223-239 ; 1226086X (ISSN) Rabiee, H ; Meshkat Alsadat, S ; Soltanieh, M ; Mousavi, S. A ; Ghadimi, A ; Sharif University of Technology
    Korean Society of Industrial Engineering Chemistry  2015
    Abstract
    Zeolite SAPO-34 was used for fabrication of mixed matrix membranes (MMMs) to improve the CO2/CH4/N2 gas separation performance of the neat Pebax1074 membrane. Permeability and selectivity of the MMMs were studied at different temperatures of 25-65°C and pressures of 4-24 bars. Also sorption of different gases in MMMs was measured at 35°C and different pressures, which showed enhanced solubility coefficients. Moreover, thermal, morphological and mechanical properties of MMMs were characterized by differential scanning calorimetry (DSC), scanning electron microscope (SEM) and tensile analysis. The results showed excellent improvement in... 

    Photo-curable acrylate polyurethane as efficient composite membrane for CO2 separation

    , Article Polymer ; Volume 149 , 2018 , Pages 178-191 ; 00323861 (ISSN) Molavi, H ; Shojaei, A ; Mousavi, S. A ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    The current investigation was to present composite membranes with strong interfacial adhesion between top polymeric selective layer and the bottom micro-porous support layer with appropriate gas permeation behavior and practically suitable processing characteristics. To this end, a series of acrylate-terminated polyurethanes (APUs) based on poly (ethylene glycol) (PEG) with different molecular weights (Mn) of 600, 1000, 1500, 2000 and 4000 g/mol, toluene diisocyanate (TDI), and 2-hydroxyethyl methacrylate (HEMA) were synthesized. Composite membranes were prepared with UV-curable acrylate-terminated polyurethane/acrylate diluent (APUAs) as selective layer and polyester/polysulfone (PS/PSF) as... 

    Effect of reactive diluent on gas separation behavior of photocurable acrylated polyurethane composite membranes

    , Article Journal of Applied Polymer Science ; Volume 137, Issue 3 , 15 January , 2020 Molavi, H ; Shojaei, A ; Mousavi, S. A ; Ahmadi, S. A ; Sharif University of Technology
    John Wiley and Sons Inc  2020
    Abstract
    In this study, the effects of the type and content of reactive diluents on the permeation/separation of carbon dioxide/nitrogen (CO2/N2) through acrylate-terminated polyurethane (APU)-acrylate/acrylic diluent (APUA) composite membranes was investigated. A series of APUs based on poly(ethylene glycol) (PEG)-1000 g mol−1, toluene diisocyanate, and 2-hydroxyethyl methacrylate was synthesized and then diluted with several reactive diluents. The results obtained from differential scanning calorimetry (DSC) and Fourier transform infrared analyses showed that the microphase interference of hard and soft segments increased with increasing reactive diluent content. Furthermore, with increasing alkene... 

    The effect of water vapor on the performance of commercial polyphenylene oxide and Cardo-type polyimide hollow fiber membranes in CO2/CH4 separation applications

    , Article Journal of Membrane Science ; Volume 285, Issue 1-2 , 2006 , Pages 265-271 ; 03767388 (ISSN) Pourafshari Chenar, M ; Soltanieh, M ; Matsuura, T ; Tabe Mohammadi, A ; Khulbe, K. C ; Sharif University of Technology
    2006
    Abstract
    The effects of water vapor on CO2/CH4 separation using commercially available poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and Cardo-type polyimide hollow fiber membranes were investigated. Pure methane and CO2/CH4 mixture permeation experiments were carried out in the absence and presence of water vapor (60% RH). Pure methane permeance decreased in the presence of water vapor for both membrane types. The decrease was 28% for hydrophilic Cardo-type polyimide and 6% for hydrophobic PPO membranes. The decline in the permeance was also observed for CO2/CH4 mixture separation through both membranes. However, selectivities of the two membranes were affected differently by water vapor. The... 

    Simultaneous separation of H2S and CO2 from CH4 by a high silica CHA-type zeolite membrane

    , Article Journal of Membrane Science ; Vol. 470, issue , 2014 , pp. 159-165 ; ISSN: 03767388 Maghsoudi, H ; Soltanieh, M ; Sharif University of Technology
    Abstract
    A high silica CHA-type membrane was synthesized by the in-situ crystallization method on a disk like α-alumina porous support to separate both acid (H2S, CO2) gases from methane. The membrane showed a permeance of 3.39×10-8mol/m2sPa for pure CO2with CO2/CH4 ideal selectivity of 21.6 at 303K and 100kPa pressure difference across the membrane. The membrane was also tested with N2 and O2 pure gases indicating a small O2/N2 selectivity of 1.2-1.4, which shows that this type of membrane is not suitable for O2/N2 separation. The membrane performance was also analyzed by binary (CO2-CH4) and ternary (H2S-CO2-CH4) gas mixtures, with compositions near the real sour natural gas (CO2: 2.13mol%, H2S:...