Loading...
Search for: membranes--artificial
0.006 seconds

    Hydration strongly affects the molecular and electronic structure of membrane phospholipids

    , Article Journal of Chemical Physics ; Volume 136, Issue 11 , 2012 ; 00219606 (ISSN) Mashaghi, A ; Partovi Azar, P ; Jadidi, T ; Nafari, N ; Maass, P ; Tabar, M. R. R ; Bonn, M ; Bakker, H. J ; Sharif University of Technology
    Abstract
    We investigate the structure and electronic properties of phosphatidylcholine (PC) under different degrees of hydration at the single-molecule and monolayer type level by linear scaling ab initio calculations. Upon hydration, the phospholipid undergoes drastic long-range conformational rearrangements which lead to a sickle-like ground-state shape. The structural unit of the tilted gel-phase PC appears to be a water-bridged PC dimer. We find that hydration dramatically alters the surface potential, dipole and quadrupole moments of the lipids and consequently guides the interactions of the lipids with other molecules and the communication between cells  

    Interaction of 3D dewetting nanodroplets on homogeneous and chemically heterogeneous substrates

    , Article Journal of Physics Condensed Matter ; Vol. 26, Issue. 22 , 2014 ; ISSN: 09538984 Asgari, M ; Moosavi, A ; Sharif University of Technology
    Abstract
    Long-time interaction of dewetting nanodroplets is investigated using a long-wave approximation method. Although three-dimensional (3D) droplets evolution dynamics exhibits qualitative behavior analogous to two-dimensional (2D) dynamics, there is an extensive quantitative difference between them. 3D dynamics is substantially faster than 2D dynamics. This can be related to the larger curvature and, as a consequence, the larger Laplace pressure difference between the droplets in 3D systems. The influence of various chemical heterogeneities on the behavior of droplets has also been studied. In the case of gradient surfaces, it is shown how the gradient direction could change the dynamics. For a... 

    Thin liquid film flow over substrates with two topographical features

    , Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Volume 87, Issue 2 , 2013 ; 15393755 (ISSN) Mazloomi, A ; Moosavi, A ; Sharif University of Technology
    2013
    Abstract
    A multicomponent lattice Boltzmann scheme is used to investigate the surface coating of substrates with two topographical features by a gravity-driven thin liquid film. The considered topographies are U- and V-shaped grooves and mounds. For the case of substrates with two grooves, our results indicate that for each of the grooves there is a critical width such that if the groove width is larger than the critical width, the groove can be coated successfully. The critical width of each groove depends on the capillary number, the contact angle, the geometry, and the depth of that groove. The second groove critical width depends on, in addition, the geometry and the depth of the first groove;... 

    TiO 2 fibers enhance film integrity and photovoltaic performance for electrophoretically deposited dye solar cell photoanodes

    , Article ACS Applied Materials and Interfaces ; Volume 3, Issue 3 , February , 2011 , Pages 638-641 ; 19448244 (ISSN) Shooshtari, L ; Rahman, M ; Tajabadi, F ; Taghavinia, N ; Sharif University of Technology
    2011
    Abstract
    Nanoparticulated TiO 2 fibers as one-dimensional long structures were introduced into TiO 2 P25 nanoparticle films using coelectrophoretic deposition. This prevented the usual crack formation occurring in wet coatings, and resulted in less porosity and higher roughness factor of the films that provided more favorable conditions for electron transport. The films used as the photoanode of a dye solar cell (DSC) produced 65% higher photovoltaic efficiency. TiO 2 fibers can be excellent binders in single-step, organic-free electrophoretic deposition of TiO 2 for DSC photoanode  

    Studies of the rate of water evaporation through adsorption layers using drop shape analysis tensiometry

    , Article Journal of Colloid and Interface Science ; Volume 308, Issue 1 , 2007 , Pages 249-253 ; 00219797 (ISSN) Fainerman, V. B ; Makievski, A. V ; Krägel, J ; Javadi, A ; Miller, R ; Sharif University of Technology
    2007
    Abstract
    With modified measuring procedure and measuring cell design in the drop profile tensiometer PAT, it became possible to study the rate of water evaporation through adsorbed or spread surface layers. This method was employed to measure the rate of water evaporation from drops covered by adsorbed layers of some proteins and surfactants, in particular n-dodecanol. It was shown that the formation of dense (double or condensed) adsorbed layers of protein and the formation of 2D-condensed n-dodecanol layer decrease the water evaporation rate by 20-25% as compared with pure water. At the same time, the adsorbed layers of ordinary surfactants (sodium dodecyl sulfate and nonionic ethoxylated... 

    Highly antifouling polymer-nanoparticle-nanoparticle/polymer hybrid membranes

    , Article Science of the Total Environment ; Volume 810 , 2022 ; 00489697 (ISSN) Vatanpour, V ; Jouyandeh, M ; Mousavi Khadem, S. S ; Paziresh, S ; Dehghan, A ; Ganjali, M. R ; Moradi, H ; Mirsadeghi, S ; Badiei, A ; Munir, M. T ; Mohaddespour, A ; Rabiee, N ; Habibzadeh, S ; Mashhadzadeh, A. H ; Nouranian, S ; Formela, K ; Saeb, M. R ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    We introduce highly antifouling Polymer-Nanoparticle-Nanoparticle/Polymer (PNNP) hybrid membranes as multi-functional materials for versatile purification of wastewater. Nitrogen-rich polyethylenimine (PEI)-functionalized halloysite nanotube (HNT-SiO2-PEI) nanoparticles were developed and embedded in polyvinyl chloride (PVC) membranes for protein and dye filtration. Bulk and surface characteristics of the resulting HNT-SiO2-PEI nanocomposites were determined using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). Moreover, microstructure and... 

    Upgrading activated sludge systems and reduction in excess sludge

    , Article Bioresource Technology ; Volume 102, Issue 22 , November , 2011 , Pages 10327-10333 ; 09608524 (ISSN) Hazrati, H ; Shayegan, J ; Sharif University of Technology
    2011
    Abstract
    Most of 200 Activated Sludge Plant in Iran are overloaded and as a result, their efficiency is low. In this work, a pilot plant is manufactured and put into operation in one of the wastewater treatment plants in the west of Tehran. Instead of conventional activated sludge, a membrane bioreactor and an upflow anaerobic sludge blanket reactor used as a pretreatment unit in this pilot. For the sake of data accuracy and precision, an enriched municipal wastewater was opted as an influent to the pilot. Based on the attained result, the optimum retention time in this system was 4. h, and the overall COD removal efficiency was 98%. As a whole, the application of this retrofit would increase the... 

    Nanomechanical properties of TiO2 granular thin films

    , Article ACS Applied Materials and Interfaces ; Volume 2, Issue 9 , 2010 , Pages 2629-2636 ; 19448244 (ISSN) Yaghoubi, H ; Taghavinia, N ; Keshavarz Alamdari, E ; Volinsky, A.A ; Sharif University of Technology
    2010
    Abstract
    Post-deposition annealing effects on nanomechanical properties of granular TiO2 films on soda-lime glass substrates were studied. In particular, the effects of Na diffusion on the films' mechanical properties were examined. TiO2 photocatalyst films, 330 nm thick, were prepared by dip-coating using a TiO2 sol, and were annealed between 100 °C and 500 °C. Film's morphology, physical and nanomechanical properties were characterized by atomic force microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, differential thermo-gravimetric analysis, and nanoindentation. Contrary to expectations, the maximum film hardness was achieved for 300°C annealing, with a value of 0.69 ± 0.05 GPa.... 

    Membrane protected conductive polymer as micro-SPE device for the determination of triazine herbicides in aquatic media

    , Article Journal of Separation Science ; Volume 33, Issue 8 , 2010 , Pages 1132-1138 ; 16159306 (ISSN) Bagheri, H ; Khalilian, F ; Naderi, M ; Babanezhad, E ; Sharif University of Technology
    Abstract
    A micro-SPE technique was developed by fabricating a rather small package including a polypropylene membrane shield containing the appropriate sorbent. The package was used for the extraction of some triazine herbicides from aqueous samples. Solvent desorption was subsequently performed in a microvial and an aliquot of extractant was injected into GC-MS. Various sorbents including aniline-ortho-phenylene diamine copolymer, newly synthesized, polypyrrole, multiwall carbon nanotube, C18 and charcoal were examined as extracting media. Among them, conductive polymers exhibited better performance. Influential parameters including extraction and desorption time, desorption solvent and the ionic... 

    Fabrication and characterization of low-cost, bead-free, durable and hydrophobic electrospun membrane for 3D cell culture

    , Article Biomedical Microdevices ; Volume 19, Issue 4 , 2017 ; 13872176 (ISSN) Moghadas, H ; Saidi, M. S ; Kashaninejad, N ; Kiyoumarsioskouei, A ; Trung Nguyen, N ; Sharif University of Technology
    Abstract
    This paper reports the fabrication of electrospun polydimethylsiloxane (PDMS) membranes/scaffolds that are suitable for three-dimensional (3D) cell culture. Through modification the ratio between PDMS and polymethylmethacrylate (PMMA) as carrier polymer, we report the possibility of increasing PDMS weight ratio of up to 6 for electrospinning. Increasing the PDMS content increases the fiber diameter, the pore size, and the hydrophobicity. To our best knowledge, this is the first report describing beads-free, durable and portable electrospun membrane with maximum content of PDMS suitable for cell culture applications. To show the proof-of-concept, we successfully cultured epithelial lung... 

    Fabrication, modeling and optimization of lyophilized advanced platelet rich fibrin in combination with collagen-chitosan as a guided bone regeneration membrane

    , Article International Journal of Biological Macromolecules ; Volume 125 , 2019 , Pages 383-391 ; 01418130 (ISSN) Ansarizadeh, M ; Mashayekhan, S ; Saadatmand, M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this study, lyophilized advanced platelet rich fibrin (A-PRF) was used in combination with collagen-chitosan membrane for the first time to combine advantages of both collagen and A-PRF membranes. Response surface methodology (RSM) was used to design the experimental condition and to correlate the effects of parameters, including chitosan/collagen (chit/col) weight ratio and A-PRF concentration on Young's modulus, mesenchymal stem cell (MSCs) viability and degradation rate of the membranes. Results showed that Young's modulus of the membranes was intensified by increasing chit/col weight ratio and decreasing A-PRF concentration from 3 to 8 MPa. Cell viability of MSCs was improved by both... 

    Hyperbranched polyethylenimine functionalized silica/polysulfone nanocomposite membranes for water purification

    , Article Chemosphere ; Volume 290 , 2022 ; 00456535 (ISSN) Vatanpour, V ; Jouyandeh, M ; Akhi, H ; Mousavi Khadem, S. S ; Ganjali, M. R ; Moradi, H ; Mirsadeghi, S ; Badiei, A ; Esmaeili, A ; Rabiee, N ; Habibzadeh, S ; Koyuncu, I ; Nouranian, S ; Formela, K ; Saeb, M. R ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Hyperbranched polyethyleneimine functionalized silica (PEI-SiO2) nanoparticles with considerable hydrophilicity were synthesized and incorporated into a polysulfone (PSF)/dimethylacetamide (DMA)/polyvinylpyrrolidone (PVP) membrane casting solution in five different ratios to fabricate PEI-SiO2/PSF nanocomposite membranes using nonsolvent-induced phase separation. The hydrophilic PEI-SiO2 nanoparticles were characterized by TEM, FTIR, TGA, and XPS analyses. Morphology, water contact angles, mean pore sizes, overall porosity, tensile strengths, water flux, antifouling and the dye separation performances of the PEI-SiO2/PSF membranes were also studied. The PEI-SiO2 nanoparticles were uniformly... 

    Optimization of some experimental parameters in the electro membrane extraction of chlorophenols from seawater

    , Article Journal of Chromatography A ; Volume 1216, Issue 45 , 2009 , Pages 7687-7693 ; 00219673 (ISSN) Lee, J ; Khalilian, F ; Bagheri, H ; Lee, H. K ; Sharif University of Technology
    2009
    Abstract
    An electro membrane extraction (EME) methodology was utilized to study the isolation of some environmentally important pollutants, such as chlorophenols, from aquatic media based upon the electrokinetic migration process. The analytes were transported by application of an electrical potential difference over a supported liquid membrane (SLM). A driving force of 10 V was applied to extract the analytes through 1-octanol, used as the SLM, into a strongly alkaline solution. The alkaline acceptor solution was subsequently analyzed by high performance liquid chromatography-ultraviolet (HPLC-UV) detection. The parameters influencing electromigration, including volumes and pH of the donor and...