Loading...
Search for: mesenchymal-stroma-cell
0.004 seconds

    Synthesis and characterization of gold nanotube/nanowire-polyurethane composite based on castor oil and polyethylene glycol

    , Article Materials Science and Engineering C ; Vol. 42 , 2014 , pp. 341-349 ; ISSN: 09284931 Ganji, Y ; Kasra,M ; Salahshour Kordestani, S ; Bagheri Hariri, M ; Sharif University of Technology
    Abstract
    Gold nanotubes/nanowires (GNT/NW) were synthesized by using the template-assisted electrodeposition technique and mixed with castor oil-polyethylene glycol based polyurethane (PU) to fabricate porous composite scaffolds for biomedical application. 100 and 50 ppm of GNT/NW were used to synthesize composites. The composite scaffolds were characterized by Fourier transform infrared spectroscopy, dynamic mechanical thermal analysis, differential scanning calorimetry, and scanning electron microscopy. Cell attachment on polyurethane-GNT/NW composites was investigated using fat-derived mesenchymal stem cells. Addition of 50 or 100 ppm GNT/NW had significant effects on thermal, mechanical, and cell... 

    Modeling and optimization of gelatin-chitosan micro-carriers preparation for soft tissue engineering: using response surface methodology

    , Article Materials Science and Engineering C ; Volume 75 , 2017 , Pages 545-553 ; 09284931 (ISSN) Radaei, P ; Mashayekhan, S ; Vakilian, S ; Sharif University of Technology
    Abstract
    Electrospray ionization is a wide spread technique for producing polymeric microcarriers (MCs) by applying electrostatic force and ionic cross-linker, simultaneously. In this study, fabrication process of gelatin-chitosan MCs and its optimization using the Response Surface Methodology (RSM) is reported. Gelatin/chitosan (G/C) blend ratio, applied voltage and feeding flow rate, their individual and interaction effects on the diameter and mechanical strength of the MCs were investigated. The obtained models for diameter and mechanical strength of MCs have a quadratic relationship with G/C blend ratio, applied voltage and feeding flow rate. Using the desirability curve, optimized G/C blend... 

    Structural stability and sustained release of protein from a multilayer nanofiber/nanoparticle composite

    , Article International Journal of Biological Macromolecules ; Volume 75 , April , 2015 , Pages 248-257 ; 01418130 (ISSN) Vakilian, S ; Mashayekhan, S ; Shabani, I ; Khorashadizadeh, M ; Fallah, A ; Soleimani, M ; Sharif University of Technology
    Elsevier  2015
    Abstract
    The cellular microenvironment can be engineered through the utilization of various nano-patterns and matrix-loaded bioactive molecules. In this study, a multilayer system of electrospun scaffold containing chitosan nanoparticles was introduced to overcome the common problems of instability and burst release of proteins from nanofibrous scaffolds. Bovine serum albumin (BSA)-loaded chitosan nanoparticles was fabricated based on ionic gelation interaction between chitosan and sodium tripolyphosphate. Suspension electrospinning was employed to fabricate poly-e{open}-caprolacton (PCL) containing protein-loaded chitosan nanoparticles with a core-shell structure. To obtain the desired scaffold... 

    Fabrication of porous gelatin-chitosan microcarriers and modeling of process parameters via the RSM method

    , Article International Journal of Biological Macromolecules ; Volume 88 , 2016 , Pages 288-295 ; 01418130 (ISSN) Karimian, S. A. M ; Mashayekhan, S ; Baniasadi, H ; Sharif University of Technology
    Elsevier B.V 
    Abstract
    Porous gelatin-chitosan microcarriers (MCs) with the size of 350 ± 50 μm were fabricated with blends of different gelatin/chitosan (G/C) weight ratio using an electrospraying technique. Response surface methodology (RSM) was used to study the quantitative influence of process parameters, including blend ratio, voltage, and syringe pump flow rate, on MCs diameter and density. In the following, MCs of the same diameter and different G/C weight ratio (1, 2, and 3) were fabricated and their porosity and biocompatibility were investigated via SEM images and MTT assay, respectively. The results showed that mesenchymal stem cells (MSCs) could attach, proliferate, and spread on fabricated porous MCs... 

    Study of epithelial differentiation and protein expression of keratinocyte-mesenchyme stem cell co-cultivation on electrospun nylon/B. vulgaris extract composite scaffold

    , Article Materials Science and Engineering C ; Volume 75 , 2017 , Pages 653-662 ; 09284931 (ISSN) Hosseinzadeh, S ; Soleimani, M ; Vossoughi, M ; Ranjbarvan, P ; Hamedi, S ; Zamanlui, S ; Mahmoudifard, M ; Sharif University of Technology
    Abstract
    Employing of the composite electrospun scaffold containing herbal extract in conjugation with co-culturing of cells can open up new window to the design of efficient biomaterials for skin tissue regeneration. Here, we introduce the synergistic effect of composite electrospun nanofibrous scaffold of nylon66 loaded with Beta vulgaris (B. vulgaris) (extract of beet roots, a plants whose widely used in Iranian folk medicine as wound healing medicine) and co-culture of mesenchymal stem-cells (MSCs)-human keratinocyte (H-keratino) differentiation towards epithelial lineage. In vitro biocompatibility was examined through MTT assay and epithelial differentiation checked by real-time PCR and...