Loading...
Search for: mesh-free-method
0.007 seconds

    Application of rkpm in numerical simulation of powder forming processes using cap plasticity model

    , Article 8th International Conference on Computational Plasticity: Fundamentals and Applications, COMPLAS VIII, Barcelona, 5 September 2005 through 7 September 2005 ; Issue PART 2 , 2005 , Pages 966-969 ; 849599979X (ISBN); 9788495999795 (ISBN) Samimi, M ; Khoei, A. R ; Sharif University of Technology
    2005
    Abstract
    In this paper, an application of the Reproducing Kernel Particle Method is presented in numerical simulation of powder forming processes using a cap plasticity model. A double-surface cap plasticity is developed within the framework of large deformation analysis in order to predict the non-uniform relative density distribution during powder die pressing. The RKPM technique is employed in the analysis of 2D compaction simulation. Numerical examples are presented to illustrate the applicability of the algorithm in modelling of powder forming processes  

    Fully enriched weight functions in mesh-free methods for the analysis of linear elastic fracture mechanics problems

    , Article Engineering Analysis with Boundary Elements ; Vol. 43 , 2014 , pp. 1-8 Namakian, R ; Shodja, H. M ; Mashayekhi, M ; Sharif University of Technology
    Abstract
    The so-called enriched weight functions (EWFs) are utilized in mesh-free methods (MMs) to solve linear elastic fracture mechanics (LEFM) problems; the following issues are of concern: convergence behavior; sufficiency of EWFs to capture singular fields around the crack-tip; and the preservation of the J-integral path-independency. EWFs prove useful in conjunction with the moving least square reproducing kernel method (MLSRKM); for this purpose, both EWFs and MLSRKM are modified. Since EWFs are not truly representative of the near-tip solution, fully EWFs (FEWFs) are introduced. Finally, some descriptive examples address the aforementioned concerns and the accuracy and efficacy of the... 

    An integrated SPH-polyhedral DEM algorithm to investigate hydraulic stability of rock and concrete blocks: application to cubic armours in breakwaters

    , Article Engineering Analysis with Boundary Elements ; Volume 84 , 2017 , Pages 1-18 ; 09557997 (ISSN) Sarfaraz, M ; Pak, A ; Sharif University of Technology
    Abstract
    In this paper, a combination of the Lagrangian meshfree method of SPH and Polyhedral DEM is presented to simulate the interaction between the free surface of water and solid objects possessing sharp edges and flat surfaces, such as armour units of breakwaters. Both SPH and DEM schemes are validated successfully against experimental data. The numerical scheme is utilized to inspect the stability of concrete cubic armours in rubble-mound breakwaters through systematic analyses with various geometrical parameters and environmental conditions. The numerical results regarding the required dimensions of the cubic blocks for providing stability of the armour units under the wave attack are compared... 

    SPH numerical simulation of tsunami wave forces impinged on bridge superstructures

    , Article Coastal Engineering ; Volume 121 , 2017 , Pages 145-157 ; 03783839 (ISSN) Sarfaraz, M ; Pak, A ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    This paper addresses numerically-derived tsunami wave loads on bridge superstructures using smoothed particle hydrodynamics (SPH), which is a type of mesh-free methods. Although there exist some relationships for the case of impinged loads on bridges exerted by regular (sinusoidal) waves, for the case of solitary waves such as tsunamis, no relation has yet been proposed in the literature. This shortcoming is partly due to the lack of understanding the mechanism of wave action on the bridge superstructures. In this study, three water depths, three wave amplitudes and four submergence depths of the deck are considered for the process of numerical investigation of tsunami-induced loads on... 

    On discretization of second-order derivatives in smoothed particle hydrodynamics

    , Article World Academy of Science, Engineering and Technology ; Volume 40 , 2009 , Pages 243-246 ; 2010376X (ISSN) Fatehi, R ; Fayazbakhsh, M. A ; Taghizadeh Manzari, M ; Sharif University of Technology
    2009
    Abstract
    Discretization of spatial derivatives is an important issue in meshfree methods especially when the derivative terms contain non-linear coefficients. In this paper, various methods used for discretization of second-order spatial derivatives are investigated in the context of Smoothed Particle Hydrodynamics. Three popular forms (i.e."double summation","second-order kernel derivation", and"difference scheme") are studied using one-dimensional unsteady heat conduction equation. To assess these schemes, transient response to a step function initial condition is considered. Due to parabolic nature of the heat equation, one can expect smooth and monotone solutions. It is shown, however in this...