Loading...
Search for: mesh-less-methods
0.011 seconds

    A meshless method to simulate interactions between large soft tissue and a surgical grasper

    , Article Scientia Iranica ; Volume 23, Issue 1 , 2016 , Pages 295-300 ; 10263098 (ISSN) Saghaei Nooshabadi, Z ; Abdi, E ; Farahmand, F ; Narimani, R ; Chizari, M ; Sharif University of Technology
    Sharif University of Technology  2016
    Abstract
    Realistic simulation of tool-tissue interactions can help to develop more effective surgical training systems and simulators. This study uses a finite element and meshless modeling approach to simulate the grasping procedure of a large intra-abdominal organ, i.e. a kidney, during laparoscopic surgery. Results indicate that the accuracy of the meshless method is comparable with that of the finite element method, with root mean square errors in the range of 0.8 to 2.3 mm in different directions. For the model presented in this study, the computational cost of the meshless method was much less than that of the finite element model  

    Electromagnetic Wave Scattering Analysis Using Meshless Methods

    , M.Sc. Thesis Sharif University of Technology Hasani, Ali (Author) ; Shishegar, Amir Ahmad (Supervisor)
    Abstract
    In this dissertation, hybrid meshless method for electromagnetic wave scattering has been presented. The idea of the dissertation is the use of two robust meshless shape functions i.e. MLS and RPIM simultaneously to solve differential and integral equations from 3D scattering equations respectively. Finite element method (FEM) and method of moments (MoM) are used extremely for computing scattering problems. These methods are powerful and their results are accurate enough. One of their disadvantages is the need of mesh generation. Mesh generation in FEM is a time consuming process. Furthermore, in electromagnetic problems that involve geometrical, the use of an underlying mesh creates... 

    Application of elastically supported single-walled carbon nanotubes for sensing arbitrarily attached nano-objects

    , Article Current Applied Physics ; Volume 13, Issue 1 , 2013 , Pages 107-120 ; 15671739 (ISSN) Kiani, K ; Ghaffari, H ; Mehri, B ; Sharif University of Technology
    Abstract
    The potential application of SWCNTs as mass nanosensors is examined for a wide range of boundary conditions. The SWCNT is modeled via nonlocal Rayleigh, Timoshenko, and higher-order beam theories. The added nano-objects are considered as rigid solids, which are attached to the SWCNT. The mass weight and rotary inertial effects of such nanoparticles are appropriately incorporated into the nonlocal equations of motion of each model. The discrete governing equation pertinent to each model is obtained using an effective meshless technique. The key factor in design of a mass nanosensor is to determine the amount of frequency shift due to the added nanoparticles. Through an inclusive parametric... 

    Response of reinforced concrete structures to macrocell corrosion of reinforcements. Part II: After propagation of microcracks via a numerical approach

    , Article Nuclear Engineering and Design ; Volume 242 , 2012 , Pages 7-18 ; 00295493 (ISSN) Kiani, K ; Shodja, H. M ; Sharif University of Technology
    2012
    Abstract
    Investigation of response of reinforced concrete (RC) structures due to axisymmetric macrocell corrosion of rebars is of concern after propagation of microcracks within the concrete medium. The geometry, boundary and interfaces conditions of the present problem are identical to those stated in part I. As seen in the companion paper, the exact solution to the boundary value problem corresponding to the uncracked steel-rust-concrete composite was possible. After appearance of the microcracks the concrete behavior becomes nonlinear anisotropic with post-cracking softening, and the associated problem is analytically intractable. Therefore, it is proposed to employ a novel meshless method, namely... 

    Free vibration analysis of FGM beams with different boundary conditions using RKPM meshless method

    , Article Proceedings of the ASME Design Engineering Technical Conference, 28 August 2011 through 31 August 2011 ; Volume 1, Issue PARTS A AND B , August , 2011 , Pages 1187-1191 ; 9780791854785 (ISBN) Saljooghi, R ; Ahmadian, M. T ; Sharif University of Technology
    Abstract
    This paper presents free vibration analysis of functionally graded material (FGM) beams with different boundary conditions, using RKPM (Reproducing Kernel Particle Method), which is a meshless method. System of equations of motion is derived by using Lagrange's method under the assumption of Euler-Bernoulli beam theory. Boundary conditions of beam are taken into account by using Lagrange multipliers. It is assumed that material properties of the beam vary continuously in the thickness direction according to the power-law form. RKPM is applied to obtain eigenvalue equation of vibration and natural frequencies are obtained. It should be noted that for special cases where the beam is uniform,... 

    Solution of burgers' equation using a local-rbf meshless method

    , Article International Journal of Computational Methods in Engineering Science and Mechanics ; Volume 12, Issue 1 , Feb , 2011 , Pages 44-58 ; 15502287 (ISSN) Hosseini, B ; Hashemi, R ; Sharif University of Technology
    2011
    Abstract
    A local radial basis function (RBF) meshless method is applied for solution of the Burgers' equation with different initial and boundary conditions of various complexities. Local-RBF collocation is employed for discretization in space, whilst the unsteady term is handled via a simple explicit time discretization. Moreover, in case of non-smooth initial conditions with high Reynolds numbers, a treatment is proposed for inability of local-RBF methods to solve such problems. The scheme is validated over a variety of benchmark problems and very good agreement is found with existing analytical and numerical solutions  

    A fully coupled element-free Galerkin model for hydro-mechanical analysis of advancement of fluid-driven fractures in porous media

    , Article International Journal for Numerical and Analytical Methods in Geomechanics ; Volume 40, Issue 16 , 2016 , Pages 2178-2206 ; 03639061 (ISSN) Samimi, S ; Pak, A ; Sharif University of Technology
    John Wiley and Sons Ltd 
    Abstract
    Hydraulic fracturing (HF) of underground formations has widely been used in different fields of engineering. Despite the technological advances in techniques of in situ HF, the industry uses semi-analytical tools to design HF treatment. This is due to the complex interaction among various mechanisms involved in this process, so that for thorough simulations of HF operations a fully coupled numerical model is required. In this study, using element-free Galerkin (EFG) mesh-less method, a new formulation for numerical modeling of hydraulic fracture propagation in porous media is developed. This numerical approach, which is based on the simultaneous solution of equilibrium and continuity... 

    Three-dimensional simulation of fully coupled hydro-mechanical behavior of saturated porous media using Element Free Galerkin (EFG) method

    , Article Computers and Geotechnics ; Volume 46 , 2012 , Pages 75-83 ; 0266352X (ISSN) Samimi, S ; Pak, A ; Sharif University of Technology
    2012
    Abstract
    Meshless methods are a relatively new type of numerical methods that have attracted the attention of many researchers over the past years. So far, a number of meshless methods have been developed and applied to solve problems in various fields of engineering, including solid mechanics and geotechnical problems. The Element-Free Galerkin (EFG) method is adopted in this study for solving the governing partial differential equations of equilibrium and continuity of pore fluid flow for numerical simulation of coupled hydro-mechanical problems. For this purpose, the weak form of the governing equations is derived by applying the weighted residual method and Galerkin technique. The penalty method... 

    Stabilized Meshless Local Petrov-Galerkin (MLPG) method for incompressible viscous fluid flows

    , Article CMES - Computer Modeling in Engineering and Sciences ; Volume 29, Issue 2 , 2008 , Pages 75-94 ; 15261492 (ISSN) Haji Mohammadi, M ; Sharif University of Technology
    2008
    Abstract
    In this paper, the truly Meshless Local Petrov-Galerkin (MLPG) method is extended for computation of steady incompressible flows, governed by the Navier-Stokes equations (NSE), in vorticity-stream function formulation. The present method is a truly meshless method based on only a number of randomly located nodes. The formulation is based on two equations including stream function Poisson equation and vorticity advection-dispersion-reaction equation (ADRE). The meshless method is based on a local weighted residual method with the Heaviside step function and quartic spline as the test functions respectively over a local subdomain. Radial basis functions (RBF) interpolation is employed in shape...