Loading...
Search for: meshfree
0.009 seconds

    Reproducing Kernel particle method in plasticity of pressure-sensitive material with reference to powder forming process

    , Article Computational Mechanics ; Volume 39, Issue 3 , 2007 , Pages 247-270 ; 01787675 (ISSN) Khoei, A. R ; Samimi, M ; Azami, A. R ; Sharif University of Technology
    Springer Verlag  2007
    Abstract
    In this paper, an application of the reproducing kernel particle method (RKPM) is presented in plasticity behavior of pressure-sensitive material. The RKPM technique is implemented in large deformation analysis of powder compaction process. The RKPM shape function and its derivatives are constructed by imposing the consistency conditions. The essential boundary conditions are enforced by the use of the penalty approach. The support of the RKPM shape function covers the same set of particles during powder compaction, hence no instability is encountered in the large deformation computation. A double-surface plasticity model is developed in numerical simulation of pressure-sensitive material.... 

    A fully explicit incompressible Smoothed Particle Hydrodynamics method for multiphase flow problems

    , Article Engineering Analysis with Boundary Elements ; Volume 143 , 2022 , Pages 501-524 ; 09557997 (ISSN) Vakilha, M ; Hopp Hirschler, M ; Shadloo, M. S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Multiphase flow is a challenging area of computational fluid dynamics (CFD) due to their potential large topological change and close coupling between the interface and fluid flow solvers. As such, Lagrangian meshless methods are very well suited for solving such problems. In this paper, we present a new fully explicit incompressible Smoothed Particle Hydrodynamics approach (EISPH) for solving multiphase flow problems. Assuming that the change in pressure between consecutive time-steps is small, due to small time steps in explicit solvers, an approximation of the pressure for following time-steps is derived. To verify the proposed method, several test cases including both single-phase and... 

    On discretization of second-order derivatives in smoothed particle hydrodynamics

    , Article World Academy of Science, Engineering and Technology ; Volume 40 , 2009 , Pages 243-246 ; 2010376X (ISSN) Fatehi, R ; Fayazbakhsh, M. A ; Taghizadeh Manzari, M ; Sharif University of Technology
    2009
    Abstract
    Discretization of spatial derivatives is an important issue in meshfree methods especially when the derivative terms contain non-linear coefficients. In this paper, various methods used for discretization of second-order spatial derivatives are investigated in the context of Smoothed Particle Hydrodynamics. Three popular forms (i.e."double summation","second-order kernel derivation", and"difference scheme") are studied using one-dimensional unsteady heat conduction equation. To assess these schemes, transient response to a step function initial condition is considered. Due to parabolic nature of the heat equation, one can expect smooth and monotone solutions. It is shown, however in this... 

    Three-dimensional simulation of fully coupled hydro-mechanical behavior of saturated porous media using Element Free Galerkin (EFG) method

    , Article Computers and Geotechnics ; Volume 46 , 2012 , Pages 75-83 ; 0266352X (ISSN) Samimi, S ; Pak, A ; Sharif University of Technology
    2012
    Abstract
    Meshless methods are a relatively new type of numerical methods that have attracted the attention of many researchers over the past years. So far, a number of meshless methods have been developed and applied to solve problems in various fields of engineering, including solid mechanics and geotechnical problems. The Element-Free Galerkin (EFG) method is adopted in this study for solving the governing partial differential equations of equilibrium and continuity of pore fluid flow for numerical simulation of coupled hydro-mechanical problems. For this purpose, the weak form of the governing equations is derived by applying the weighted residual method and Galerkin technique. The penalty method...