Loading...
Search for: metakaolin
0.004 seconds

    Corrigendum: “geopolymers vs. alkali-activated materials (AAMs): a comparative study on durability, microstructure, and resistance to elevated temperatures of lightweight mortars” (JCBM 222 (2019) (49–63), (S0950061819315089), (10.1016/j.conbuildmat.2019.06.079))

    , Article Construction and Building Materials ; Volume 283 , 2021 ; 09500618 (ISSN) Ameri, F ; Shoaei, P ; Zareei, A. R ; Behforouz, B ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The authors regret that there was an error in the XRD pattern for pumice shown in Fig. 8. The authors have re-analyzed the pumice to address the concerns over the reliability of the pattern due to the presence of noises, and the updated XRD pattern has been shown in Fig. 8 here for more accuracy of the presented information. It is noteworthy that this change does not affect any of the conclusions. The authors would like to apologise for any inconvenience caused. © 2021 Elsevier Ltd  

    Geopolymers vs. alkali-activated materials (AAMs): A comparative study on durability, microstructure, and resistance to elevated temperatures of lightweight mortars

    , Article Construction and Building Materials ; Volume 222 , 2019 , Pages 49-63 ; 09500618 (ISSN) Ameri, F ; Shoaei, P ; Zareei, S. A ; Behforouz, B ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    This paper studied the durability, microstructure, and fire behavior of lightweight mortars based on cement, metakaolin (MK), ultrafine ground granulated blast furnace slag (UGGBFS), ceramic waste powder (CWP), and clay brick waste powder (CBWP). Two sets of mixes were prepared with two types of lightweight aggregate including lightweight expanded clay aggregate (LECA) and pumice aggregate. Regarding the durability assessment, the electrical resistivity and water absorption of the mortars were measured. The UGGBFS-based alkali-activated mortar with pumice aggregate exhibited the highest electrical resistivity and lowest water absorption, while CBWP-based geopolymer mortar with LECA showed... 

    The effect of mixing molar ratios and sand particles on microstructure and mechanical properties of metakaolin-based geopolymers

    , Article Materials Chemistry and Physics ; Volume 240 , 2020 Riahi, S ; Nemati, A ; Khodabandeh, A. R ; Baghshahi, S ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this study the influence of the molar ratios such as SiO2:Al2O3:Na2O:H2O, as well as the sand particles on the mechanical performance, shrinkage and microstructure of metakaolin based geopolymers was studied. Considering different content of the reactive silica and alumina in metakaolin, forty eight different compositions were prepared. The proper condition for achieving the highest mechanical performance as well as less structural defects by tailoring the curing condition, molar ratios and addition of sand particles are presented. Special attention was paid to the incorporation of sand particles up to 70 wt% on the microstructure, shrinkage and mechanical properties of metakaolin based...