Loading...
Search for: metal-implants
0.007 seconds

    Bioactivity of Surface Modified Titanium Alloy Ti-6Al-4V ELI by Pack Siliconizing in Simulated Body Fluid

    , M.Sc. Thesis Sharif University of Technology Rezvani, Alireza (Author) ; Ekrami, Ali Akbar (Supervisor) ; Ziaei Moayyed, Ali Akbar (Supervisor)
    Abstract
    Titanium alloy Ti-6Al-4V ELI with high biocompatibility and corrosion resistance, has a lot of applications in biomedical engineering. Disadvantage of this alloy is it’s disability to create a fast and good contact with the host/bone environment, after implanting in the body. Beside that it has low wear resistance. Nowadays to optimize the wear resistance, bioactivity and osteoconduction of surface of implants which are made from this alloy, the surface morphology are optimized in size and distribution. Different surface treatments are used for producing rough and porous surfaces to improve bioactivity along with wear resistance. In this study, surface modification of Ti-6Al-4V ELI was done... 

    Biomimetic synthesis of calcium phosphate materials on alkaline-treated titanium

    , Article 29th Annual International Conference of IEEE-EMBS, Engineering in Medicine and Biology Society, EMBC'07, Lyon, 23 August 2007 through 26 August 2007 ; 2007 , Pages 5853-5856 ; 05891019 (ISSN) ; 1424407885 (ISBN); 9781424407880 (ISBN) Salemi, H ; Behnamghader, A ; Afshar, A ; Ardeshir, M ; Forati, T ; Sharif University of Technology
    2007
    Abstract
    The hydroxyapatite coating on metal implants is a suitable method to create a bioactive surface and to increase the bone-implant bonding strength. In this research, at first the titanium surface was treated with NaOH solutions ; 5N and 10N at 60°C for 24 h and 5N at 60°C for 24 h followed by heating at 600°C for 1 h. The samples were immersed in the simulated body fluid (SBF) for 28 days to generate a calcium phosphate coating on titanium substrates. The modified substrates and coatings were characterized using SEM and XRD. According to the results obtained in this work the concentration increase of the NaOH solution has influenced the grain boundaries, whereas the heat treatment at 600°C... 

    Electrophoretic deposition of chitosan

    , Article Materials Letters ; Volume 63, Issue 26 , 2009 , Pages 2253-2256 ; 0167577X (ISSN) Simchi, A ; Pishbin, F ; Boccaccini, A. R ; Sharif University of Technology
    2009
    Abstract
    The electrophoretic deposition (EPD) of chitosan on metallic substrates was investigated. The electrophoretic mobility of the natural biopolymer in aqueous solution as a function of pH was studied. Because the protonation/deporotonation of chitosan is pH-dependent, the electrophoretic mobility and deposition rate is shown to increase with increasing pH from 2.9 to 4.1. The film growth rate is estimated to vary in the range 0.02-0.08 μm/s depending on the pH value. At high growth rates (> 0.05 μm/s), a porous film is obtained due to hydrogen entrapment. The EPD method developed here is applicable for the surface modification of metal implants by chitosan to develop novel bioactive coatings. ©... 

    Effect of oxidizing atmosphere on the surface of titanium dental implant material

    , Article Journal of Bionic Engineering ; Volume 16, Issue 6 , 2019 , Pages 1052-1060 ; 16726529 (ISSN) Khodaei, M ; Alizadeh, A ; Madaah Hosseini, H. R ; Sharif University of Technology
    Springer  2019
    Abstract
    Direct oxidation is a simple and effective method for titanium surface treatment. In this research, a titanium sample was directly oxidized at the high temperature in two different atmospheres, air and pure oxygen, to obtain better atmosphere for titanium surface treatment. The results of the Raman spectroscopy indicated that in both atmospheres, the rutile bioactive phase (TiO2) has been formed on the titanium surface. The results of X-ray diffraction (XRD) also revealed that the surface of oxygen-treated sample was composed of the rutile phase and titanium monoxide (TiO), while at the surface of the air-treated sample, the rutile phase and titanium dioxide had been formed. Further, the... 

    A state-of-the-art review of the fabrication and characteristics of titanium and its alloys for biomedical applications

    , Article Bio-Design and Manufacturing ; 2021 ; 20965524 (ISSN) Sarraf, M ; Rezvani Ghomi, E ; Alipour, S ; Ramakrishna, S ; Liana Sukiman, N ; Sharif University of Technology
    Springer  2021
    Abstract
    Abstract: Commercially pure titanium and titanium alloys have been among the most commonly used materials for biomedical applications since the 1950s. Due to the excellent mechanical tribological properties, corrosion resistance, biocompatibility, and antibacterial properties of titanium, it is getting much attention as a biomaterial for implants. Furthermore, titanium promotes osseointegration without any additional adhesives by physically bonding with the living bone at the implant site. These properties are crucial for producing high-strength metallic alloys for biomedical applications. Titanium alloys are manufactured into the three types of α, β, and α + β. The scientific and clinical... 

    Ag-incorporated biodegradable Mg alloys

    , Article Materialia ; Volume 23 , 2022 ; 25891529 (ISSN) Mohammadi Zerankeshi, M ; Alizadeh, R ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Biodegradable magnesium implants possess excellent mechanical properties and biocompatibility, which make them suitable candidates to be employed as temporary structures for the bone regeneration purposes. However, there are still important challenges which limit their extensive use in biomedical applications, where the most important ones include implant-associated infection, rapid degradation rate and the need for improved mechanical properties. Silver, which is a strong antimicrobial agent, has been extensively used for improving the mentioned challenges in biodegradable Mg alloys either as alloying element or incorporation in the protective coating. Ag addition has been reported to have... 

    Porous shape memory dental implant by reactive sintering of TiH2–Ni-Urea mixture

    , Article Materials Science and Engineering C ; Volume 107 , 2020 Akbarinia, S ; Sadrnezhaad, S .K ; Hosseini, S. A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    We produced bifurcated bone-like shape memory implant (BL-SMI) with desirable tooth-root fixation capability by compact-sintering of TiH2–Ni-urea mixture. The primary constituents of the porous product were Ni and Ti. We could adjust the pores' shape, size, and interconnectivity for favorite bone ingrowth by using urea as a space holder. Without urea, we obtained an average porosity of 0.30, and a mean void size of 100 μm. With 70 vol % urea, we got 62% interconnected pores of 400 μm average size. Aging allowed us to tune the austenite-martensite transformation temperatures towards the needed body tissue arouse. Differential scanning calorimetry measured the transformation temperatures.... 

    Bioinspired TiO2/chitosan/HA coatings on Ti surfaces: Biomedical improvement by intermediate hierarchical films

    , Article Biomedical Materials (Bristol) ; Volume 17, Issue 3 , 2022 ; 17486041 (ISSN) Rahnamaee, S. Y ; Ahmadi Seyedkhani, S ; Eslami Saed, A ; Sadrnezhaad, S. K ; Seza, A ; Sharif University of Technology
    Institute of Physics  2022
    Abstract
    The most common reasons for hard-tissue implant failure are structural loosening and prosthetic infections. Hence, in this study, to overcome the first problem, different bioinspired coatings, including dual acid-etched, anodic TiO2 nanotubes array, anodic hierarchical titanium oxide (HO), micro- and nanostructured hydroxyapatite (HA) layers, and HA/chitosan (HA/CS) nanocomposite, were applied to the titanium alloy surfaces. X-ray diffraction and FTIR analysis demonstrated that the in situ HA/CS nanocomposite formed successfully. The MTT assay showed that all samples had excellent cell viability, with cell proliferation rates ranging from 120% to 150% after 10 days. The HO coating... 

    A state-of-the-art review of the fabrication and characteristics of titanium and its alloys for biomedical applications

    , Article Bio-Design and Manufacturing ; Volume 5, Issue 2 , 2022 , Pages 371-395 ; 20965524 (ISSN) Sarraf, M ; Rezvani Ghomi, E ; Alipour, S ; Ramakrishna, S ; Liana Sukiman, N ; Sharif University of Technology
    Springer  2022
    Abstract
    Abstract: Commercially pure titanium and titanium alloys have been among the most commonly used materials for biomedical applications since the 1950s. Due to the excellent mechanical tribological properties, corrosion resistance, biocompatibility, and antibacterial properties of titanium, it is getting much attention as a biomaterial for implants. Furthermore, titanium promotes osseointegration without any additional adhesives by physically bonding with the living bone at the implant site. These properties are crucial for producing high-strength metallic alloys for biomedical applications. Titanium alloys are manufactured into the three types of α, β, and α + β. The scientific and clinical... 

    Development of HAp/GO/Ag coating on 316 LVM implant for medical applications

    , Article Journal of the Mechanical Behavior of Biomedical Materials ; Volume 126 , 2022 ; 17516161 (ISSN) Ahmadi, R ; Izanloo, S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In this study, antibacterial activity, biocompatibility, and corrosion resistance of 316 LVM implants were improved using the development of HAp/GO/Ag nanocomposite coatings by the dip-coating method. The XRD and FTIR results confirmed the synthesis of HAp/GO/Ag nanocomposites. HAp/Ag nanoparticles (68 nm) bound to epoxy, hydroxyl, and carboxyl functional groups on GO sheets (size of GO sheets varies from 255 to 1480 nm) by electrostatic interaction. FESEM images showed that HAp/GO/Ag coatings had higher density and fewer micro-cracks than pure HAp coatings. In addition, HAp/GO/Ag coatings showed optimized nano-hardness (4.5 GPa) and elasticity modulus (123 GPa). The results of...