Loading...
Search for: metalorganic-frameworks--mofs
0.005 seconds
Total 34 records

    Synthesis of M/CuO (M = Ag, Au) from Cu based metal organic frameworks for efficient catalytic reduction of p-nitrophenol

    , Article Materials Chemistry and Physics ; Volume 198 , 2017 , Pages 374-379 ; 02540584 (ISSN) Akbarzadeh, E ; Falamarzi, M ; Gholami, M. R ; Sharif University of Technology
    Abstract
    Metal Organic Frameworks (MOFs) have received enormous attention in catalysis field due to their special structures and various promising applications. One of the intriguing applications of MOFs is utilization of them as precursors for synthesis of metal oxide nanomaterials. Base on this strategy, in this work, we have applied Cu-MOF to prepare a series of noble metal nanoparticles (Ag and Au) decorated CuO (M/CuO) as efficient catalyst. As-prepared nanocomposites were characterized by various analytical techniques and their catalytic performances appraised by using of the catalytic reduction of p-nitrophenol to p-aminophenol as a reliable model reaction. Experimental results suggest that... 

    Metal–organic frameworks (MOFs) for cancer therapy

    , Article Materials ; Volume 14, Issue 23 , 2021 ; 19961944 (ISSN) Saeb, M. R ; Rabiee, N ; Mozafari, M ; Verpoort, F ; Voskressensky, L. G ; Luque, R ; Sharif University of Technology
    MDPI  2021
    Abstract
    MOFs exhibit inherent extraordinary features for diverse applications ranging from cataly-sis, storage, and optics to chemosensory and biomedical science and technology. Several procedures including solvothermal, hydrothermal, mechanochemical, electrochemical, and ultrasound techniques have been used to synthesize MOFs with tailored features. A continued attempt has also been directed towards functionalizing MOFs via “post-synthetic modification” mainly by changing linkers (by altering the type, length, functionality, and charge of the linkers) or node components within the MOF framework. Additionally, efforts are aimed towards manipulating the size and morphology of crystallite domains in... 

    Metal-organic frameworks-based nanomaterials for drug delivery

    , Article Materials ; Volume 14, Issue 13 , 2021 ; 19961944 (ISSN) Saeb, M. R ; Rabiee, N ; Mozafari, M ; Mostafavi, E ; Sharif University of Technology
    MDPI AG  2021
    Abstract
    The composition and topology of metal-organic frameworks (MOFs) are exceptionally tailorable; moreover, they are extremely porous and represent an excellent Brunauer–Emmett–Teller (BET) surface area (≈3000–6000 m2·g−1). Nanoscale MOFs (NMOFs), as cargo nanocarriers, have increasingly attracted the attention of scientists and biotechnologists during the past decade, in parallel with the evolution in the use of porous nanomaterials in biomedicine. Compared to other nanoparticle-based delivery systems, such as porous nanosilica, nanomicelles, and dendrimer-encapsulated nanoparticles, NMOFs are more flexible, have a higher biodegradability potential, and can be more easily functionalized to meet... 

    Conversion of CO into CO2 by high active and stable PdNi nanoparticles supported on a metal-organic framework

    , Article Frontiers of Chemical Science and Engineering ; 2021 ; 20950179 (ISSN) Abbasi, F ; Karimi Sabet, J ; Abbasi, Z ; Ghotbi, C ; Sharif University of Technology
    Higher Education Press Limited Company  2021
    Abstract
    The solubility of Pd(NO3)2 in water is moderate whereas it is completely soluble in diluted HNO3 solution. Pd/MIL-101(Cr) and Pd/MIL-101-NH2(Cr) were synthesized by aqueous solution of Pd(NO3)2 and Pd(NO3)2 solution in dilute HNO3 and used for CO oxidation reaction. The catalysts synthesized with Pd(NO3)2 solution in dilute HNO3 showed lower activity. The aqueous solution of Pd(NO3)2 was used for synthesis of mono-metal Ni, Pd and bimetallic PdNi nanoparticles with various molar ratios supported on MOF. Pd70Ni30/MIL-101(Cr) catalyst showed higher activity than monometallic counterparts and Pd + Ni physical mixture due to the strong synergistic effect of PdNi nanoparticles, high distribution... 

    Conversion of CO into CO2 by high active and stable PdNi nanoparticles supported on a metal-organic framework

    , Article Frontiers of Chemical Science and Engineering ; 2021 ; 20950179 (ISSN) Abbasi, F ; Karimi Sabet, J ; Abbasi, Z ; Ghotbi, C ; Sharif University of Technology
    Higher Education Press Limited Company  2021
    Abstract
    The solubility of Pd(NO3)2 in water is moderate whereas it is completely soluble in diluted HNO3 solution. Pd/MIL-101(Cr) and Pd/MIL-101-NH2(Cr) were synthesized by aqueous solution of Pd(NO3)2 and Pd(NO3)2 solution in dilute HNO3 and used for CO oxidation reaction. The catalysts synthesized with Pd(NO3)2 solution in dilute HNO3 showed lower activity. The aqueous solution of Pd(NO3)2 was used for synthesis of mono-metal Ni, Pd and bimetallic PdNi nanoparticles with various molar ratios supported on MOF. Pd70Ni30/MIL-101(Cr) catalyst showed higher activity than monometallic counterparts and Pd + Ni physical mixture due to the strong synergistic effect of PdNi nanoparticles, high distribution... 

    A zwitterion metal-organic framework for the removal of fluoride from an aqueous solution

    , Article Journal of Chemical Sciences ; Volume 134, Issue 3 , 2022 ; 09743626 (ISSN) Aliakbari, M ; Gholami, R. M ; Borghei, S. M ; Sharif University of Technology
    Springer  2022
    Abstract
    Excess fluoride is one of the water pollutants in the world, which is removed from water by chemical methods to produce sludge. On the other hand, techniques such as R.O. (Reverse Osmosis) also have problems with power consumption and wastewater disposal. Metal-organic frameworks are one of the newest adsorbents used to separate anions. In this study, MOF1 ({[Zn3L3(BPE)1.5]·4.5DMF}n) was used to remove fluoride from the aqueous solution. The influence of various factors such as pH, contact time, adsorbent amount, and temperature on fluoride uptake was investigated. Based on the results, the MOF synthesized in acidic media absorbs more fluoride ions. The reaction time in the first 20 min had... 

    Metal-Organic framework derived CuCo2O4 as a promising Co-Catalyst for improving electrochemical hydrogen evolution activity of MoS2 nanoflowers

    , Article Chemical Physics Letters ; Volume 809 , 2022 ; 00092614 (ISSN) Koohdareh, A.R ; Taherinia, D ; Akbarzadeh, E ; Gholami, M.R ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    The great promise of electrochemical water splitting for green and sustainable hydrogen fuel production has motivated researchers to strive for more efficient and low-cost catalysts based on non-precious metals. In this study, MoS2 nanoflowers decorated with CuCo2O4 were successfully synthesized, and their catalytic activities toward the electrochemical hydrogen evolution reaction (HER) in an alkaline medium were investigated. The composition, structure, and morphology of the as-synthesized catalysts were explored by various techniques such as FT-IR, XRD, BET, SEM, and TEM. To maximize the catalytic activity, the composition of the nanocomposites was systematically varied. Catalytic results... 

    Evaluation of UiO-66 metal organic framework as an effective sorbent for curcumin's overdose

    , Article Applied Organometallic Chemistry ; Volume 32, Issue 4 , 2018 ; 02682605 (ISSN) Molavi, H ; Zamani, M ; Aghajanzadeh, M ; Kheiri Manjili, H ; Danafar, H ; Shojaei, A ; Sharif University of Technology
    John Wiley and Sons Ltd  2018
    Abstract
    Metal organic frameworks (MOFs) UiO-66 (UiO stands for University of Oslo) and NH2-UiO-66 were prepared and characterized as sorbent (antidotal agents) for curcumin (CUR) adsorption. The structure of products were characterized by X-ray powder diffraction (XRD), Field emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), Attenuated Total Reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), and N2 adsorption–desorption measurements. FESEM showed NH2-UiO-66 displayed symmetrical crystals with triangular base pyramid morphology, with the particle size around 100 nm and uniform size distribution. Adsorption capacities of CUR/MOFs with different mass ratios... 

    Superior chemical stability of UiO-66 metal-organic frameworks (MOFs) for selective dye adsorption

    , Article Chemical Engineering Journal ; Volume 399 , 2020 Ahmadijokani, F ; Mohammadkhani, R ; Ahmadipouya, S ; Shokrgozar, A ; Rezakazemi, M ; Molavi, H ; Aminabhavi, T. M ; Arjmand, M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    The presence of dyes as pollutants in wastewater sources from textile industries can cause significant health issues if they are not adequately treated. Dye adsorption to entrap contaminants in nanoparticle pores has created considerable attention in recent years due to the environmental concerns occurring as a result of spillage of dyes in water bodies. In efforts to understand adsorption capability UiO-66, metal-organic frameworks (MOFs) were developed and examined for the separation of four pollutant dyes containing methyl red (MR), methyl orange (MO), malachite green (MG), and methylene blue (MB), which are widely used in textile industries. The adsorbent structural stability in water,... 

    Cobalt based Metal Organic Framework/Graphene nanocomposite as high performance battery-type electrode materials for asymmetric Supercapacitors

    , Article Journal of Energy Storage ; 2020 Azadfalah, M ; Sedghi, A ; Hosseini, H ; Kashani, H ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Recently, development of advanced materials of metal-organic frameworks (MOFs) has attracted attention for the fabrication of supercapacitors (SCs) because of their high surface area and high level of porosity. However, poor electrical conductivity and weak mechanical properties of the MOFs have restricted their applications in the field. In this study, a one-step, in-situ synthesis of Cobalt-based MOF with graphene (CoMG nanocomposite) was employed to overcome the poor properties of MOFs. Accordingly, when the nanocomposite (CoMG5) was use as a supercapacitor electrode material, a specific capacitance (CS) of 549.96 F g−1 was observed in a three-electrode system with 6 M KOH electrolyte... 

    Green synthesis of Ag–Pt bimetallic nanoparticles supported on the Metal–Organic framework (MOF)–Derived metal oxides (γ-Fe2O3/CuO) nanocomposite as a reusable heterogeneous nanocatalyst and nanophotocatalyst

    , Article Materials Chemistry and Physics ; Volume 261 , 2021 ; 02540584 (ISSN) Gholizadeh Khasevani, S ; Taheri, M ; Gholami, M. R ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The heterogeneous environmentally friendly catalyst and photocatalyst based on Ag, Pt, Ag–Pt nanoparticles (NPs) loading on the γ-Fe2O3/CuO nanocomposite which was derived from Fe-metal organic framework (Fe-MIL-88B) and Cu-metal organic framework (Cu (tpa)) was introduced. The catalytic and photocatalytic activities of Ag–Pt loading on the γ-Fe2O3/CuO nanocomposite were performed for a reduction process (4-nitrophenol (4-Nip) to 4-aminophenol (4-Amp)), and decomposition organic dyes (AB92, MB) in the LED light. Metal-organic framework (MOFs) composed with inorganic and organic linker which used as suitable precursors to obtain different type of nanostructures for environmental applications.... 

    Fabrication and evaluation of controlled release of doxorubicin loaded UiO-66-NH2 metal organic frameworks

    , Article International Journal of Engineering, Transactions B: Applications ; Volume 34, Issue 8 , 2021 , Pages 1874-1881 ; 1728144X (ISSN) Rakhshani, N ; Hassanzadeh Nemati, N ; Ramezani Saadatabadi, A ; Sadrnezhaad, S. K ; Sharif University of Technology
    Materials and Energy Research Center  2021
    Abstract
    The metal-organic frameworks (MOFs) due to their large specific surface area and high biocompatibility are suitable as carriers for drug delivery systems (DDSs). In the present study, doxorubicin (DOX) as an anticancer drug was loaded into UiO-66-NH2 MOFs to decrease the adverse side effects of pristine DOX use and to increase its efficiency through the controlled release of DOX from MOFs. The MOFs were synthesized via microwave heating method and characterized using X-ray diffraction, scanning electron microscopy, and Brunauer-Emmett- Teller analysis. The drug loading efficiency, drug release profiles from synthesized MOFs and pharmacokinetic studies were investigated. The biocompatibility... 

    Construction of an epoxy composite coating with exceptional thermo-mechanical properties using Zr-based NH2-UiO-66 metal-organic framework (MOF): Experimental and DFT-D theoretical explorations

    , Article Chemical Engineering Journal ; Volume 408 , 2021 ; 13858947 (ISSN) Ramezanzadeh, M ; Tati, A ; Bahlakeh, G ; Ramezanzadeh, B ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    In this study, for the first time, the influence of the nanoporous Zr-based NH2-UiO-66 metal-organic frameworks (MOFs) on the tensile strength and fracture toughness of the epoxy coating was investigated. In addition, the impacts of the UiO particles' functionality (i.e., NH2 or GMA) on the MOFs/epoxy interfacial bonding and nanoparticles dispersion quality in the epoxy resin were examined by the tensile test, dynamic mechanical thermal analysis (DMTA) and field emission-scanning electron microscope (FE-SEM). The NH2-UiO-66 and GMA-UiO-66 MOFs chemical structures were investigated by FT-IR, BET, and FE-SEM approaches. The FE-SEM investigation of the fracture morphology (at the cross-section... 

    Magnetically recyclable Fe3O4@TMU-32 metal-organic framework photocatalyst for tetracycline degradation under visible light

    , Article Inorganic Chemistry ; Volume 60, Issue 23 , 2021 , Pages 17997-18005 ; 00201669 (ISSN) Abdollahi, N ; Ostovan, A ; Rahimi, K ; Zahedi, M ; Moshfegh, A. Z ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    Metal-organic frameworks (MOFs) are a new class of porous crystalline materials being used as photocatalysts for efficient pollutant removal and environmental remediation. In this study, the TMU-32 MOF was synthesized as an effective photocatalyst for the photodegradation of tetracycline (TC) with 96% efficiency in 60 min under visible light. The high photocatalytic activity of the TMU-32 MOF is mainly due to its large specific surface area, which is beneficial for promoting both the adsorption of TC and the separation of the photoinduced charges. Moreover, its desired crystallinity makes it a semiconductor with an appropriate band gap energy. Next, a composite of the TMU-32 MOF with Fe3O4... 

    CO2/CH4 separation by mixed-matrix membranes holding functionalized NH2-MIL-101(Al) nanoparticles: Effect of amino-silane functionalization

    , Article Chemical Engineering Research and Design ; Volume 176 , 2021 , Pages 49-59 ; 02638762 (ISSN) Ahmadipouya, S ; Ahmadijokani, F ; Molavi, H ; Rezakazemi, M ; Arjmand, M ; Sharif University of Technology
    Institution of Chemical Engineers  2021
    Abstract
    In this study, NH2-MIL-101(Al) metal-organic frameworks (MOFs) covered with 3-aminopropyltriethoxysilane (APTES) were incorporated into the polyethersulfone (PES) to produce mixed-matrix membranes (MMMs) for CO2 separation. The APTES functionalization was performed to improve the MOF dispersion in the PES matrix. Different analyses such as X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and field emission scanning electron microscopy (FESEM) revealed that the MOFs surface successfully functionalized with APTES. An improvement in CO2/CH4 separation efficiency was observed in MMMs, and the performance... 

    Magnetically recyclable fe3o4@tmu-32 Metal-Organic framework photocatalyst for tetracycline degradation under visible light

    , Article Inorganic Chemistry ; Volume 60, Issue 23 , 2021 , Pages 17997-18005 ; 00201669 (ISSN) Abdollahi, N ; Ostovan, A ; Rahimi, K ; Zahedi, M ; Moshfegh, A. Z ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    Metal-organic frameworks (MOFs) are a new class of porous crystalline materials being used as photocatalysts for efficient pollutant removal and environmental remediation. In this study, the TMU-32 MOF was synthesized as an effective photocatalyst for the photodegradation of tetracycline (TC) with 96% efficiency in 60 min under visible light. The high photocatalytic activity of the TMU-32 MOF is mainly due to its large specific surface area, which is beneficial for promoting both the adsorption of TC and the separation of the photoinduced charges. Moreover, its desired crystallinity makes it a semiconductor with an appropriate band gap energy. Next, a composite of the TMU-32 MOF with Fe3O4... 

    CO2/CH4 separation by mixed-matrix membranes holding functionalized NH2-MIL-101(Al) nanoparticles: Effect of amino-silane functionalization

    , Article Chemical Engineering Research and Design ; Volume 176 , 2021 , Pages 49-59 ; 02638762 (ISSN) Ahmadipouya, S ; Ahmadijokani, F ; Molavi, H ; Rezakazemi, M ; Arjmand, M ; Sharif University of Technology
    Institution of Chemical Engineers  2021
    Abstract
    In this study, NH2-MIL-101(Al) metal-organic frameworks (MOFs) covered with 3-aminopropyltriethoxysilane (APTES) were incorporated into the polyethersulfone (PES) to produce mixed-matrix membranes (MMMs) for CO2 separation. The APTES functionalization was performed to improve the MOF dispersion in the PES matrix. Different analyses such as X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and field emission scanning electron microscopy (FESEM) revealed that the MOFs surface successfully functionalized with APTES. An improvement in CO2/CH4 separation efficiency was observed in MMMs, and the performance... 

    Cobalt based metal organic framework/graphene nanocomposite as high performance battery-type electrode materials for asymmetric supercapacitors

    , Article Journal of Energy Storage ; Volume 33 , 2021 ; 2352152X (ISSN) Azadfalah, M ; Sedghi, A ; Hosseini, H ; Kashani, H ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Recently, development of advanced materials of metal-organic frameworks (MOFs) has attracted attention for the fabrication of supercapacitors (SCs) because of their high surface area and high level of porosity. However, poor electrical conductivity and weak mechanical properties of the MOFs have restricted their applications in the field. In this study, a one-step, in-situ synthesis of Cobalt-based MOF with graphene (CoMG nanocomposite) was employed to overcome the poor properties of MOFs. Accordingly, when the nanocomposite (CoMG5) was use as a supercapacitor electrode material, a specific capacitance (CS) of 549.96 F g−1 was observed in a three-electrode system with 6 M KOH electrolyte... 

    Trimetallic Co-Ni-Mn metal-organic framework as an efficient electrocatalyst for alkaline oxygen evolution reaction

    , Article Journal of Electroanalytical Chemistry ; Volume 922 , 2022 ; 15726657 (ISSN) Taherinia, D ; Hatami, H ; Mirzaee Valadi, F ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Designing efficient and inexpensive catalysts toward the oxygen evolution reaction (OER) is vital for achieving sustainable and green hydrogen fuel production through water electrolysis. Herein, we have synthesized several bi- and trimetallic metal–organic frameworks (MOFs) composed of Co, Ni, and Mn metals and benzene-1,3,5-tricarboxylic acid linker. The MOFs were prepared via a simple hydrothermal method, and their electrocatalytic performances in alkaline OER were investigated. A battery of analytical techniques was employed to characterize the as-synthesized materials, including field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM),... 

    Application of an amino-functionalized MIL-53(Al) MOF as an efficient, selective, and durable adsorbent for SO2removal

    , Article Journal of Environmental Chemical Engineering ; Volume 10, Issue 6 , 2022 ; 22133437 (ISSN) Noushadi, A ; Fotovat, F ; Hamzehlouyan, T ; Vahidi, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Sulfur dioxide (SO2) is one of the acidic components found in the flue gas that can harm industrial facilities and the environment. SO2 adsorption by metal-organic frameworks (MOFs) is an emerging method to effectively remove SO2 in low concentrations from the gas mixtures. In this study, amino-functionalized MIL-53(Al), i.e., NH2-MIL-53(Al), was synthesized through the solvothermal method and examined for SO2 adsorption at relatively moderate pressure and temperature (up to 2 bar, 25-80 °). According to the results of XRD, FT-IR, TGA, and DSC analysis, NH2-MIL-53(Al) demonstrated appropriate water, acid, and thermal stability. The SO2 adsorption capacity of NH2-MIL-53(Al) was 5.21 mmol.g-1...