Loading...
Search for: methicillin-resistant-staphylococcus-aureus
0.008 seconds

    Improving bactericidal performance of implant composite coatings by synergism between Melittin and tetracycline

    , Article Journal of Materials Science: Materials in Medicine ; Volume 33, Issue 6 , 2022 ; 09574530 (ISSN) Zarghami, V ; Ghorbani, M ; Pooshang Bagheri, K ; Shokrgozar, M. A ; Sharif University of Technology
    Springer  2022
    Abstract
    Methicillin resistance Staphylococcus aureus bacteria (MRSA) are serious hazards of bone implants. The present study was aimed to use the potential synergistic effects of Melittin and tetracycline to prevent MRSA associated bone implant infection. Chitosan/bioactive glass nanoparticles/tetracycline composite coatings were deposited on hydrothermally etched titanium substrate. Melittin was then coated on composite coatings by drop casting method. The surfaces were analyzed by FTIR, XRD, and SEM instruments. Tetracycline in coatings revealed multifunctional behaviors include bone regeneration and antibacterial activity. Releasing ALP enzyme from MC3T3 cells increased by tetracycline, so it is... 

    Sustainable release of vancomycin from silk fibroin nanoparticles for treating severe bone infection in rat tibia osteomyelitis model

    , Article ACS Applied Materials and Interfaces ; Volume 9, Issue 6 , 2017 , Pages 5128-5138 ; 19448244 (ISSN) Hassani Besheli, N ; Mottaghitalab, F ; Eslami, M ; Gholami, M ; Kundu, S. C ; Kaplan, D. L ; Farokhi, M ; Sharif University of Technology
    American Chemical Society  2017
    Abstract
    The successful treatment of bone infections is a major challenge in the field of orthopedics. There are some common methods for treating bone infections, including systemic antibiotic administration, local nondegradable drug vehicles, and surgical debridement, and each of these approaches has advantages and disadvantages. In the present study, the antibiotic vancomycin (VANCO) was loaded in silk fibroin nanoparticles (SFNPs) and the complexes were then entrapped in silk scaffolds to form sustained drug delivery systems. The release kinetics of VANCO from SFNPs alone and when the SFNPs were entrapped in silk scaffolds were assessed at two different pH values, 4.5 and 7.4, that affected the... 

    Synthesis of nanostructured Ag@SiO2-Penicillin from high purity Ag NPs prepared by electromagnetic levitation melting process

    , Article Materials Science and Engineering C ; Volume 102 , 2019 , Pages 616-622 ; 09284931 (ISSN) Malekzadeh, M ; Yeung, K. L ; Halali, M ; Chang, Q ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Nanostructured Ag@SiO2-Penicillin was synthesized from high-purity Ag0 NPs with a mean particle size of about 10 nm produced by electromagnetic levitation gas condensation (ELGC) method. The silver and penicillin contents of the synthesized nano-antibiotic were about 34 wt% and 2.5 wt% respectively, as determined by ICP-OES and TGA analyses. The antibacterial properties and synergistic effects of nanostructured Ag@SiO2 and Ag@SiO2–Penicillin on killing the Methicillin-susceptible S. aureus (MSSA) and Methicillin-resistant S. aureus (MRSA) bacteria were also examined. The nanoparticles were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Ag@SiO2-Penicillin... 

    Graphene/Cuo2nanoshuttles with controllable release of oxygen nanobubbles promoting interruption of bacterial respiration

    , Article ACS Applied Materials and Interfaces ; Volume 12, Issue 32 , 2020 , Pages 35813-35825 Jannesari, M ; Akhavan, O ; Madaah Hosseini, H. R ; Bakhshi, B ; Sharif University of Technology
    American Chemical Society  2020
    Abstract
    An oxygen nanoshuttle based on a reduced graphene oxide/copper peroxide (rGO/CuO2) nanocomposite has been presented to deliver in situ oxygen nanobubbles (O2 NBs) for combating bacterial infections. In the presence of rGO, the solid source of oxygen (i.e., CuO2) was decomposed (in response to environmental conditions such as pH and temperature) into O2 NBs in a more controllable and long-lasting trend (from 60 to 144 h). In a neutral buffer, the O2 NBs experienced growth and collapse evolutions, creating a dynamic micro-nanoenvironment around the nanocomposite. In addition to effective battling against methicillin-resistant Staphylococcus aureus bacteria, the O2 NBs demonstrated superior... 

    Preparation and optimization of ciprofloxacin encapsulated niosomes: A new approach for enhanced antibacterial activity, biofilm inhibition and reduced antibiotic resistance in ciprofloxacin-resistant methicillin-resistance Staphylococcus aureus

    , Article Bioorganic Chemistry ; Volume 103 , October , 2020 Mirzaie, A ; Peirovi, N ; Akbarzadeh, I ; Moghtaderi, M ; Heidari, F ; Yeganeh, F. E ; Noorbazargan, H ; Mirzazadeh, S ; Bakhtiari, R ; Sharif University of Technology
    Academic Press Inc  2020
    Abstract
    Ciprofloxacin is an alternative to vancomycin for treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections. The objective of this study was to optimization of niosomes encapsulated ciprofloxacin and evaluate their antibacterial and anti-biofilm efficacies against ciprofloxacin-resistant methicillin-resistant S. aureus (CR-MRSA) strains. Formulation of niosomes encapsulated ciprofloxacin were optimized by changing the proportions of Tween 60, Span 60, and cholesterol. The optimized ciprofloxacin encapsulated niosomal formulations based on Span 60 and Tween 60 were prepared and characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and...