Loading...
Search for: methyl-parathion
0.005 seconds

    MoS2 quantum-dots as a label-free fluorescent nanoprobe for the highly selective detection of methyl parathion pesticide

    , Article Analytical Methods ; Volume 9, Issue 4 , 2017 , Pages 716-723 ; 17599660 (ISSN) Fahimi Kashani, N ; Rashti, A ; Hormozi Nezhad, M. R ; Mahdavi, V ; Sharif University of Technology
    Royal Society of Chemistry  2017
    Abstract
    A reliable, simple, and sensitive fluorescence method was developed for the determination of methyl parathion (MP) in rice using MoS2 quantum dots (QDs). Rapid hydrolysis of MP under alkaline conditions, and thus the formation of p-nitrophenol (p-NP) can be used for MP detection. The functional mechanism of the nanoprobe relies on p-nitrophenol-induced photoluminescence quenching of MoS2 QDs. The high probability of resonance energy transfer (RET) stems from the spectral overlap of MoS2 QD emission spectra and the absorption spectra of p-NP. The high value of the Stern-Volmer constant (KSV = 3.73 × 104 M-1) suggests the efficient quenching of MoS2 QDs by MP in the course of the ET process.... 

    A smart-phone based ratiometric nanoprobe for label-free detection of methyl parathion

    , Article Sensors and Actuators, B: Chemical ; Volume 322 , 2020 Fahimi Kashani, N ; Hormozi Nezhad, M. R ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    The widespread use of pesticides in pest management has boosted the demands for developing highly sensitive probes for on-site monitoring. Herein we presented a sensitive enzyme-free ratiometric probe for determination of methyl parathion (MP), as an organophosphate pesticide using TGA-capped CdTe QDs and carbon dots (CDs). Unlike previous methods in which hydrolysis product of MP is instrumental in the response of the sensors, here, self-assembly of cetyltrimethylammonium bromide (CTAB) on the surface of non-modified yellow-emissive CdTe QDs facilitates the quenching of CTAB-QDs upon addition of MP while the fluorescence intensity of CDs remains constant. Using a smartphone, the ratiometric...