Loading...
Search for: mg-alloy
0.007 seconds
Total 28 records

    Microstructure and texture development during friction stir processing of Al–Mg alloy sheets with TiO2 nanoparticles [electronic resource]

    , Article Materials Science and Engineering: A ; 27 May 2014, Volume 605, Pages 108–118 Khodabakhshi, F ; Simchi, A. (Abdolreza) ; Kokabi, A. H ; Nosko, M ; Simancik, F ; Svec, P ; Sharif University of Technology
    Abstract
    Aluminum matrix nanocomposites were fabricated by friction stir processing of Al–Mg alloy sheets with pre-placed TiO2 nanoparticles at a concentration of 2 to 6 vol%. Microstructural studies showed that solid state reactions between the metal matrix and TiO2 particles caused in situ formation of MgO and Al3Ti nanophases with an average size ~50 nm. These nanophases were homogenously distributed in an ultra-fine grain structure (0.2–2 µm) of the base metal. The results of pole figures evaluation obtained by electron back scattered diffraction studies revealed that the random orientation of initial annealed sheet was changed to components near to shear and silver texture in the friction stir... 

    Degradation behavior of the as-extruded and ECAP-processed Mg-4Zn alloy by Ca addition and hydrothermal coating

    , Article Journal of Materials Research and Technology ; Volume 20 , 2022 , Pages 1204-1215 ; 22387854 (ISSN) Zohrevand, M ; Mohammadi Zerankeshi, M ; Nobakht Farin, F ; Alizadeh, R ; Mahmudi, R ; Sharif University of Technology
    Elsevier Editora Ltda  2022
    Abstract
    Coating is an effective approach to address the high corrosion rate of biodegradable Mg alloys, as their main challenge toward their extensive use. In this regard, it was tried to control the degradation process of an Mg-4Zn alloy by Ca addition, equal channel angular pressing (ECAP), and hydrothermal coating. The obtained results indicated that excellent grain refinement induced by Ca incorporation and ECAP simultaneously, improved both mechanical strength and corrosion resistance of the Mg-based substrate. The achieved grain refinement resulted in a thicker, more compact and integrated coating, where the ECAP-processed Mg-4Zn-0.5Ca alloy exhibited the best coating quality with no... 

    Ag-incorporated biodegradable Mg alloys

    , Article Materialia ; Volume 23 , 2022 ; 25891529 (ISSN) Mohammadi Zerankeshi, M ; Alizadeh, R ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Biodegradable magnesium implants possess excellent mechanical properties and biocompatibility, which make them suitable candidates to be employed as temporary structures for the bone regeneration purposes. However, there are still important challenges which limit their extensive use in biomedical applications, where the most important ones include implant-associated infection, rapid degradation rate and the need for improved mechanical properties. Silver, which is a strong antimicrobial agent, has been extensively used for improving the mentioned challenges in biodegradable Mg alloys either as alloying element or incorporation in the protective coating. Ag addition has been reported to have... 

    Effects of hydrogen and oxides on tensile properties of Al-Si-Mg cast alloys

    , Article Materials Science and Engineering A ; Volume 552 , 2012 , Pages 36-47 ; 09215093 (ISSN) Eisaabadi B., G ; Davami, P ; Kim, S. K ; Varahram, N ; Sharif University of Technology
    Abstract
    Gas porosities and entrapped double oxide film (hereafter: oxides) are known to be the most detrimental defects in cast Al-Si-Mg alloys. This study investigated the effects of dissolved hydrogen (hereafter: H) and oxides on reproducibility of tensile properties in Al-7Si-0.35 Mg alloys. Also the effects of H and oxides content on the morphology of defects were studied. Four different casting conditions (low oxide-low H, low oxide-high H, high oxide-low H, high oxide-high H) were tested using tensile test bars that were cast in a metallic mold. Results of tensile test that were obtained for each casting condition were analyzed using Weibull two-parameter analysis. Microstructure and fracture... 

    Cryogenic friction-stir processing of ultrafine-grained Al-Mg-TiO2 nanocomposites

    , Article Materials Science and Engineering A ; Vol. 620, issue , 2014 , pp. 471-482 ; ISSN: 09215093 Khodabakhshi, F ; Gerlich, A. P ; Simchi, A ; Kokabi, A. H ; Sharif University of Technology
    Abstract
    Submerged friction-stir processing under cryogenic conditions was employed to fabricate ultrafine-grained nanocomposites with enhanced mechanical characteristics. Al-Mg alloy sheet with 3vol% TiO2 nanoparticles were processed under air (ambient temperature), a water-dry ice medium (~-25°C), and liquid nitrogen. It is shown that a homogenous distribution of reinforcement particles throughout the metal matrix is attained at a rotational speed of 1400rpm and a traverse velocity of 50mm/min after 4 passes. In situ formation of Al3Ti and MgO nanophases during multi-pass processing is shown by transmission electron microscopy. Under the cryogenic cooling condition, ultrafine grains and cellular... 

    A novel approach to find the kinetics of dynamic recovery based on hot flow curves

    , Article Materials Science and Engineering A ; Volume 544 , May , 2012 , Pages 88-91 ; 09215093 (ISSN) Mostafaei, M. A ; Kazeminezhad, M ; Sharif University of Technology
    2012
    Abstract
    A novel method is proposed in order to find the kinetics of dynamic recovery in the form of Avrami relation using hot flow curves. The relation is derived on the basis of variation of dislocation density with strain. The model is applied on an Al-Mg alloy  

    On the effect of hydrogen and Fe on reproducibility of tensile properties in cast Al-Si-Mg alloys

    , Article Materials Science and Engineering A ; Volume 565 , 2013 , Pages 278-284 ; 09215093 (ISSN) Eisaabadi B., G ; Davami, P ; Varahram, N ; Kim, S. K ; Sharif University of Technology
    2013
    Abstract
    Gas porosities and Fe-rich phases and entrapped double oxide films (hereafter: oxides) are known to be the most detrimental defects in cast Al-Si-Mg alloys. The effects of H (gas porosities) and Fe (Β-Al5FeSi phase) on reproducibility of tensile properties in Al-7Si-0.35Mg alloy have been investigated in this study. Four different casting conditions (Low H-Low Fe, Low H-High Fe, High H-Low Fe and High H-High Fe) were studied. In each case, 30 tensile test samples were prepared by casting in a metallic mold and machining (total of 120 tensile test samples). Results of tensile test were analyzed by Weibull three-parameter analyses. The microstructures of samples were studied by optical... 

    Effect of oxide films, inclusions and Fe on reproducibility of tensile properties in cast Al-Si-Mg alloys: Statistical and image analysis

    , Article Materials Science and Engineering A ; Volume 558 , 2012 , Pages 134-143 ; 09215093 (ISSN) Eisaabadi B, G ; Davami, P ; Kim, S. K ; Varahram, N ; Yoon, Y. O ; Yeom, G. Y ; Sharif University of Technology
    2012
    Abstract
    Double oxide films (hereafter: oxides), inclusions and Fe-rich phases are known to be the most detrimental defects in cast Al-Si-Mg alloys. The effects of these defects on reproducibility of tensile properties in Al-7Si-0.35Mg alloy have been investigated in this study. Four different casting conditions (low oxide-low Fe, high oxide-low Fe, low oxide-high Fe and high oxide-high Fe) were studied. In each case, 30 tensile test samples were prepared by casting in a metallic mold and machining (total of 120 tensile test samples). Results of tensile test were analyzed by Weibull three-parameter and mixture analyses. The microstructure and fracture surface of samples were studied by optical and... 

    Recrystallization behavior of multi-directionally forged over-aged and solution treated Al-Cu-Mg alloy during non-isothermal annealing

    , Article Materials and Design ; Volume 132 , 2017 , Pages 250-256 ; 02641275 (ISSN) Khani Moghanaki, S ; Kazeminezhad, M ; Logé, R ; Sharif University of Technology
    Abstract
    The recrystallization behavior of an Al-Cu-Mg alloy is investigated in multi-directionally forged over-aged and solution treated alloys, during non-isothermal annealing. Deformation and non-isothermal annealing are performed with a Gleeble 3800 thermo-mechanical simulator. The hardness measurements show that there is a thermal stability in mechanical properties during non-isothermal annealing up to 250 °C with heating rate of 10 K·min− 1. Differential scanning calorimetry curves of deformed over-aged and solution treated alloys describe the related precipitation phenomena. EBSD maps demonstrate that partially recrystallized and fully recrystallized microstructures appear in deformed... 

    Mechanical behavior and texture development of over-aged and solution treated Al-Cu-Mg alloy during multi-directional forging

    , Article Materials Characterization ; Volume 135 , 2018 , Pages 221-227 ; 10445803 (ISSN) Khani Moghanaki, S ; Kazeminezhad, M ; Logé, R ; Sharif University of Technology
    Elsevier Inc  2018
    Abstract
    The effects of initial heat treatments, i.e. solution treating and over ageing, on deformation behavior of an age hardenable Al-Cu-Mg alloy, including mechanical properties and texture evolution, during multi-directional forging (MDF) are investigated. Hardness measurements, electron back scatter diffraction (EBSD) maps, and differential scanning calorimetry (DSC) are carried out. Mechanical behaviors of the alloy in terms of compressive stress and hardness test after MDF are investigated. In both solution treated and over-aged alloys, the compressive stress during MDF shows an increase up to the second pass, and by further straining the flow stress is decreased. However, shear and... 

    Microstructural evolution, mechanical properties, and corrosion resistance of a heat-treated Mg alloy for the bio-medical application

    , Article Journal of Magnesium and Alloys ; Volume 7, Issue 1 , 2019 , Pages 80-89 ; 22139567 (ISSN) Janbozorgi, M ; Karimi Taheri, K ; Karimi Taheri, A ; Sharif University of Technology
    National Engg. Reaserch Center for Magnesium Alloys  2019
    Abstract
    During the recent years, some Mg based alloys have extensively been considered as a new generation of degradable and absorbable bio-medical materials. In this work, the Mg–2Zn–1Gd–1Ca (wt%) alloy as a new metallic bio-material was produced by the casting process followed by the heat treatment. The samples of the alloy were solution treated at temperatures of 500, 550, and 600 °C and then quench aged at temperatures of 125, 150, and 175 °C. The results of SEM-EDS examinations indicated that the alloy microstructure consists of α-Mg matrix and the Ca2Mg6Zn3 and Mg3Gd2Zn3 secondary phases. With regard to the results of Vickers hardness test, the temperatures of 500 °C and 150 °C were selected... 

    Effect of Zn content and processing route on the microstructure, mechanical properties, and bio-degradation of Mg-Zn alloys

    , Article Journal of Materials Research and Technology ; Volume 21 , 2022 , Pages 4473-4489 ; 22387854 (ISSN) Asadollahi, M ; Gerashi, E ; Alizadeh, R ; Mahmudi, R ; Sharif University of Technology
    Elsevier Editora Ltda  2022
    Abstract
    The effects of zinc content (2 and 4 wt%), heat treatment (solution-Treated and T6), as well as hot deformation (extrusion and multi-directional forging (MDF)) on the microstructure, mechanical and degradation behavior of Mg-Zn alloys were studied. As the result of microstructure refinement, solid solution and precipitate strengthening (formation of MgZn second phases), the strength of pure Mg was increased after Zn addition. Solution treatment of the Mg-4Zn alloy resulted in 16% softening due to the dissolution of the MgZn second phases and also grain growth, while aging treatment increased the strength value by 8% in comparison to the as-cast material because of the formation of the fine... 

    Effects of current density on microstructure and corrosion property of coating on AZ31 Mg alloy processed via plasma electrolytic oxidation

    , Article Magnesium Technology ; February , 2014 , pp. 345-349 ; ISSN: 15454150 ; ISBN: 9781118888162 Lee, K. M ; Einkhah, F ; Sani, M. A. F ; Ko, Y. G ; Shin, D. H ; Sharif University of Technology
    Abstract
    The effects of the current density on the microstructure and the corrosion property of the coating on AZ31 Mg alloy processed by the plasma electrolytic oxidation (PEO) were investigated. The present coatings were produced in an acid electrolyte containing K2ZrF6 with three different current densities, i.e., 100, 150, and 200 mA/cm2. From the microstructural observations, as the applied current density was increased, the diameter of micro-pores formed by the plasma discharges with high temperature increased. The coatings on AZ31 Mg alloy were mainly composed of MgO, ZrO 2, MgF2, and Mg2Zr5O12 phases. The results of potentiodynamic polarization clearly showed that the PEO-treated AZ31 Mg... 

    Effect of liquation on the tensile properties of cast Mg–9Al–1Zn Alloy fusion welds

    , Article Science and Technology of Welding and Joining ; Volume 25, Issue 8 , 2020 , Pages 698-705 Pouranvari, M ; Jiryaei Sharahi, H ; Movahedi, M ; Sharif University of Technology
    Taylor and Francis Ltd  2020
    Abstract
    This paper aims at understanding the role of liquation and solidification phenomena on the tensile properties of arc welded cast AZ91 magnesium alloy. Owing to its refined microstructure, the fusion zone exhibited improved ductility/strength compared to the base metal. It is demonstrated that the partially melted zone (PMZ) which is characterised by constitutional liquation of eutectic β-Mg17Al12 phase is the weakest link in the weldment. The reduced strength and ductility associated with the liquation phenomena are due to the increased volume fraction and thickness of the eutectic β-Mg17Al12 in the PMZ as well as the formation of liquation micro-cracks in a network of brittle intermetallic... 

    Effect of two steps annealing on the microstructure and dynamic strain aging behavior of Al-6Mg alloy

    , Article Materials Science and Engineering A ; Volume 798 , 2020 Saadat, Z ; Khani Moghanaki, S ; Kazeminezhad, M ; Goodarzi, M ; Ghiasi Afjeh, S. M. B ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    The microstructure of cold rolled Al–6Mg alloy is investigated after two steps annealing at different coupled temperatures of 250–320 °C and 320–400 °C for various times. Dynamic strain aging behavior in terms of serrated flow and strain rate sensitivity is investigated. The effect of three microstructural features, cell structure, recovered and recrystallized microstructures, on the strain rate sensitivity is elucidated. Two steps annealing process is utilized to capture the effect of recovery and precipitation phenomena on recrystallization and dynamic strain aging behaviors. The results show that the negative strain rate sensitivity of cold rolled specimen increases to positive values in... 

    Critical review on fusion welding of magnesium alloys: metallurgical challenges and opportunities

    , Article Science and Technology of Welding and Joining ; Volume 26, Issue 8 , 2021 , Pages 559-580 ; 13621718 (ISSN) Pouranvari, M ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    As the lightest structural alloys, magnesium alloys offer significant potential for improving the energy efficiency of various transportation systems. The lack of sufficient weldability of Mg alloys is a crucial barrier to their potential use in safety-critical applications. Porosity formation, grain structure engineering, solidification cracking, liquation, and liquation cracking are the key metallurgical challenges to obtain reliable and robust fusion welds in Mg alloys. This critical review highlights the current understating regarding controlling the metallurgical phenomena during fusion welding of Mg alloys and discusses the unresolved metallurgical challenges to shed light on the path... 

    A modified model on solute alloying element effect in Al-Mg alloys: Mechanical properties and dislocation density evolutions

    , Article Materials and Design ; Volume 36 , 2012 , Pages 804-808 ; 02641275 (ISSN) Firouzabadi, S. S ; Kazeminezhad, M ; Sharif University of Technology
    2012
    Abstract
    A modified dislocation based model is introduced to explain the flow stress of Al-Mg alloys at different temperatures and strain rates considering solute alloying element concentration. The solute effect on flow stress is studied on the basis of storage and annihilation of dislocation. It is studied that how the increase of solute content can postpone the dislocation annihilation and how this can affect the storage phenomenon. It is found that the increasing of solute concentration can postpone the beginning of dislocation annihilation through deformation and also increase the critical strain that plateau occurs in plot of annihilation of dislocation versus shear strain. Thus, the plateau... 

    Investigation into characteristics of Portevin-Le Chatelier effect of an Al-Mg Alloy

    , Article Journal of Materials Engineering and Performance ; Volume 19, Issue 9 , 2010 , Pages 1264-1267 ; 10599495 (ISSN) Sheikh, H ; Sharif University of Technology
    Abstract
    In this study, the plastic instabilities associated with the Portevin-Le Chatelier (PLC) and their effects on the mechanical properties and the fracture surfaces have been investigated for AA 5083. Tensile tests were performed at various temperatures and strain rates in order to do so. Then, serrated and smooth yielding domains were determined in Ln ε̇-1/T diagram. The stress-strain curves related to the serrated domain show the values of flow stress decreases by increasing the strain rate at a constant temperature. In addition, the plot of critical strain versus imposed strain rate indicates an inverse manner at very low strain rates. It is confirmed that the type of PLC bands alters the... 

    Study on the dynamic and static softening phenomena in Al-6Mg alloy during two-stage deformation through interrupted hot compression test

    , Article Measurement: Journal of the International Measurement Confederation ; Volume 77 , 2016 , Pages 50-53 ; 02632241 (ISSN) Pouraliakbar, H ; Pakbaz, M ; Firooz, S ; Jandaghi, M. R ; Khalaj, G ; Sharif University of Technology
    Elsevier, B. V  2016
    Abstract
    The dynamic and static softening phenomena in Al-6Mg alloy were studied through interrupted two-stage hot compression test performed isothermally at 480°C and strain rate range of 0.001-0.1 s-1. The interruptions of 29 and 90 s were considered when the true strain reached 0.5. It was concluded that the effect of static softening on the flow stress was not highlighted by extending the interruption at a constant strain rate. Also, it was exhibited that softening rate highly enhanced with the strain rate decrement at a constant time. Moreover, the static and dynamic recrystallization was revealed as the dominant softening mechanisms at low and high strain rates, respectively  

    The prediction of hot flow behavior of Al-6%Mg alloy

    , Article Mechanics Research Communications ; Volume 36, Issue 2 , 2009 , Pages 252-259 ; 00936413 (ISSN) Gholamzadeh, A ; Karimi Taheri, A ; Sharif University of Technology
    2009
    Abstract
    In this research, the plastic flow behavior of Al-6%Mg alloy was studied by analyzing the results of hot compression tests in a range of temperature and strain rate. Then, an artificial neural network (ANN) model was trained at which the temperature, strain-rate, and strain parameters were used as the input layer and the flow stress as the output. The comparison of the predicted and experimental results of stress-strain curve proved the prediction capability of the ANN model. © 2008 Elsevier Ltd. All rights reserved