Loading...
Search for:
michaelis-menten-kinetics
0.006 seconds
Development and verification of a model to describe an immobilized glucose isomerase packed bed bioreactor
, Article Biochemical Engineering Journal ; Volume 40, Issue 2 , 2008 , Pages 328-336 ; 1369703X (ISSN) ; Roostaazad, R ; Sharif University of Technology
2008
Abstract
In this paper, the performance of immobilized packed bed glucose isomerase enzyme was mathematically modeled. A modified Michaelis-Menten type relation was used to describe the enzyme kinetics. Mass transfer inside the biocatalyst particle and through the bed column was analyzed simultaneously. Using measured data, physicochemical properties including diffusivity, viscosity and density of sugar solutions were correlated with its concentrations and were used to provide precision in solving the set of model equations. Model equations were solved using the Runge-Kutta and Gauss-Seidel algorithms and finite difference numerical method in MATLAB environment. Model output was used to demonstrate...
Mathematical modeling of human blood clotting formation
, Article 6th International Special Topic Conference on ITAB, 2007, Tokyo, 8 November 2007 through 11 November 2007 ; 2007 , Pages 273-276 ; 9781424418688 (ISBN) ; Jahed, M ; Sharif University of Technology
Institute of Electrical and Electronics Engineers Inc
2007
Abstract
Over the last two decades, mathematical modeling has become a popular tool in study of blood coagulation. This paper describes the coagulation pathway and presents a mathematical model for the generation of blood clot in human vasculature. Parameters of interest in this study include procoagulants and anticoagulants whose activity may be enhanced by various activator enzymes. The process of human blood clotting involves a complex interaction between these parameters and continuous time and state processes. In this work, we propose to model these highly inter-relational processes by a set of nonlinear chemical rate equations. We have modeled this process as a dynamical system, as chemical...
Spectrophotometric determination of sulfide based on peroxidase inhibition by detection of purpurogallin formation
, Article Ecotoxicology and Environmental Safety ; Volume 91 , 2013 , Pages 117-121 ; 01476513 (ISSN) ; Kariminia, H. R ; Roosta Azad, R ; Sharif University of Technology
2013
Abstract
This paper presents a new method for spectrophotometirc detection of sulfide applying fungal peroxidase immobilized on sodium alginate. The sensing scheme was based on decrease of the absorbance of the orange compound, purpurogallin produced from pyrogallol and H2O2 as substrates, due to the inhibition of peroxidase by sulfide. Absorbance of purpurogallin was detected at 420nm by using a spectrophotometer. The proposed method could successfully detect the sulfide in the concentration range of 0.6-7.0μM with a detection limit of 0.4μM. The kinetic parameters of Michaelis-Menten with and without sulfide were also calculated. Possible inhibition mechanism of peroxidase by sulfide was deduced...
Simulation of the effects of oxygen carriers and scaffold geometry on oxygen distribution and cell growth in a channeled scaffold for engineering myocardium
, Article Mathematical Biosciences ; Volume 294 , 2017 , Pages 160-171 ; 00255564 (ISSN) ; Mashayekhan, S ; Bastani, D ; Sharif University of Technology
Abstract
This study proposes a mathematical model to evaluate the impact of oxygen carriers and scaffold geometry on oxygen distribution and cell growth in a 3D cardiac construct using computational fluid dynamics (CFD). Flow equations, oxygen balance equation and cell balance equation were solved using special initial and boundary conditions. The modeling results revealed that 55% increase in cardiac cell density occurred by using 6.4% perfluorocarbon oxygen carrier (PFC) compared to pure culture medium without PFC supplementation. Moreover, the effects of the scaffold geometry on cell density were examined by changing the channel numbers and the construct length. A 30% increase in the average cells...
Examination of chondroitinase ABC I immobilization onto dextran-coated Fe3O4 nanoparticles and its in-vitro release
, Article Journal of Biotechnology ; Volume 309 , 2020 , Pages 131-141 ; Vossoughi, M ; Khajeh, K ; Alemzadeh, I ; Sharif University of Technology
Elsevier B.V
2020
Abstract
Chondroitinase ABC I (cABC I) has received notable attention in treatment of spinal cord injuries and its application as therapeutics has been limited due to low thermal stability at physiological temperature. In this study, cABC I enzyme was immobilized on the dextran-coated Fe3O4 nanoparticles through physical adsorption to improve the thermal stability. The nanoparticles were characterized using XRD, SEM, VSM, and FTIR analyses. Response surface methodology and central composite design were employed to assess factors affecting the activity of immobilized cABC I. Experimental results showed that pH 6.3, temperature 24 °C, enzyme/support mass ratio 1.27, and incubation time 5.7 h were the...