Loading...
Search for: micro-beams
0.005 seconds
Total 54 records

    Exact boundary controllability of vibrating non-classical Euler-Bernoulli micro-scale beams

    , Article Journal of Mathematical Analysis and Applications ; Vol. 418, issue. 2 , 2014 , pp. 985-997 ; ISSN: 0022247X Vatankhah, R ; Najafi, A ; Salarieh, H ; Alasty, A ; Sharif University of Technology
    Abstract
    This study investigates the exact controllability problem for a vibrating non-classical Euler-Bernoulli micro-beam whose governing partial differential equation (PDE) of motion is derived based on the non-classical continuum mechanics. In this paper, it is proved that via boundary controls, it is possible to obtain exact controllability which consists of driving the vibrating system to rest in finite time. This control objective is achieved based on the PDE model of the system which causes that spillover instabilities do not occur  

    Size-dependent generalized thermoelasticity model for Timoshenko micro-beams based on strain gradient and non-Fourier heat conduction theories

    , Article Composite Structures ; Vol. 116, issue. 1 , July , 2014 , p. 595-611 Taati, E ; Molaei Najafabadi, M ; Reddy, J. N ; Sharif University of Technology
    Abstract
    The governing equations of coupled thermoelasticity of Timoshenko micro-beams are developed based on the generalized thermoelastic theory and non-Fourier heat conduction model. Such problems may arise in MEMS such as micro-pumps as well as micro-sensors. The present model is on the basis of non-classical continuum theory and non-Fourier heat conduction model which has capability of capturing the size-effect in micro-scaled structures. Governing equations and both classical and non-classical boundary conditions of motion are obtained using the variational approach. As the case study, the present model is utilized for the simply supported micro-beams subjected to a constant impulsive force per... 

    Boundary stabilization of non-classical micro-scale beams

    , Article Applied Mathematical Modelling ; Volume 37, Issue 20-21 , 2013 , Pages 8709-8724 ; 0307904X (ISSN) Vatankhah, R ; Najafi, A ; Salarieh, H ; Alasty, A ; Sharif University of Technology
    2013
    Abstract
    In this paper, the problem of boundary stabilization of a vibrating non-classical micro-scale Euler-Bernoulli beam is considered. In non-classical micro-beams, the governing Partial Differential Equation (PDE) of motion is obtained based on the non-classical continuum mechanics which introduces material length scale parameters. In this research, linear boundary control laws are constructed to stabilize the free vibration of non-classical micro-beams which its governing PDE is derived based on the modified strain gradient theory as one of the most inclusive non-classical continuum theories. Well-posedness and asymptotic stabilization of the closed loop system are investigated for both cases... 

    Analytical solution for large amplitude vibrations of microbeams actuated by an electro-static force

    , Article Scientia Iranica ; Volume 20, Issue 5 , 2013 , Pages 1499-1507 ; 10263098 (ISSN) Baghani, M ; Asgarshamsi, A ; Goharkhah, M ; Sharif University of Technology
    Sharif University of Technology  2013
    Abstract
    An analytical study using Variational Iteration Method (VIM) is carried out in order to investigate the vibrations of electro-statically actuated double-clamped and simply-supported microbeams. Effects of applied voltage and residual axial load on the nonlinear natural frequency and deflection of the microbeams are studied. It shows that pre-compression in microbeams increases the amplitude of deflections for a specific applied voltage. Also, an increase in pre-tension motivates the microbeam to show more nonlinear behavior in an applied voltage. Predicted results are compared with the experimental data available in the literature and also with numerical results which shows a good agreement.... 

    Adaptive boundary control of the size-dependent behavior of euler-bernoulli micro-beams with unknown parameters and varying disturbance

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 231, Issue 10 , 2017 , Pages 1777-1790 ; 09544062 (ISSN) Nojoumian, M. A ; Vatankhah, R ; Salarieh, H ; Sharif University of Technology
    Abstract
    In this paper, modeling and vibration control of a strain-gradient clamped-free Euler-Bernoulli micro-beam exposed to varying disturbance is studied. A strain-gradient model of the Euler-Bernoulli micro-beam is represented in this paper and consisted of one partial differential equation and six ordinary equations as governing motion equation and boundary conditions, respectively. A boundary controller is proposed to suppress the system's vibration. The controller is derived based on the direct Lyapunov method. An adaptation law is devised to assure system's stability under parametric uncertainties. With the proposed adaptive robust boundary control, uniform boundedness under environmental... 

    Small-scale thermoelastic damping in micro-beams utilizing the modified couple stress theory and the dual-phase-lag heat conduction model

    , Article Journal of Thermal Stresses ; Volume 42, Issue 7 , 2019 , Pages 801-814 ; 01495739 (ISSN) Borjalilou, V ; Asghari, M ; Bagheri, E ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    In this article, the size-dependent behavior of micro-beams with the thermoelastic damping (TED) phenomenon is studied. The coupled thermoelasticity equations are derived on the basis of the modified couple stress theory (MCST) and dual-phase-lag (DPL) heat conduction model. By solving these coupled equations simultaneously, a closed-form expression for the TED parameter in micro-beams is presented which considers the small-scale effects incorporation. Then, the effect of various parameters on TED in micro-beams, such as micro-beam height, the type of material, boundary conditions, and aspect ratio is investigated. The results show that the influence of utilizing non-classical continuum and... 

    A size-dependent yield criterion

    , Article International Journal of Engineering Science ; Vol. 74, issue , Jan , 2014 , p. 151-161 Kahrobaiyan, M. H ; Rahaeifard, M ; Ahmadian, M. T ; Sharif University of Technology
    Abstract
    In this paper, a size-dependent non-classical yield criterion is introduced on the basis of the modified couple stress theory in order to capture the size-dependency of the micro-scale structure yielding loads where the attempts of the classical yield criteria such as the von-Mises have been in vain. In order to develop the new yield criterion, the deviatoric part of the micro-scale structure strain energy density, including both classical and non-classical parts, is equated to the deviatoric strain energy density of a macro-size tensile-test sample at the yielding point. For bending of microbeams and torsion of microbars, the size-dependent yielding moments have been determined based on the... 

    Vibration and Dynamic Analysis of a Micro/Nano Beam Made of Functionally Graded Materials Subjected to an External Load Using the Non-Local Theory

    , M.Sc. Thesis Sharif University of Technology Moheimani, Reza (Author) ; Ahmadian, Mohammad Taghi (Supervisor) ; Zohoor, Hassan (Supervisor)
    Abstract
    Nowadays functionally graded materials (FGM's) are widely used in different engineering applications such as aerospace, solid mechanics And biomechanics among others. FGM's are inhomogeneous composites made of two different materials, usually a metal and a ceramic with continuous variation of properties. Recently these materials according to their special characteristics are used in micro and nano electro mechanical systems. As size decreases in mechanical systems due to interatomic forces, energy balance law won't be valid locally and therefore classical equations of elasticity may not be used anymore. To overcome this problem,nonlocal theories of elasticity were initiated in works of... 

    Nonlinear tracking control of a microbeam displacement by electrostatic actuation

    , Article World Academy of Science, Engineering and Technology ; Volume 79 , July , 2011 , Pages 232-236 ; ISSN: 2010376X Karami, F ; Layeghi, H ; Salarieh, H ; Alasti, A ; Sharif University of Technology
    Abstract
    In this study tracking problem of tip of a micro cantilever, actuated by electrostatic, is investigated. Dynamic model of the system is a PDE. Using electrostatic actuation.introduced significant nonlinearity in dynamic model of the system. Control goals are achieved by means of backstepping for SI and feedback linearization for MI system. Performance of control system is inspected for some assumptions and simplifications. The results are in according to numerical simulations  

    Nonlinear forced vibration of strain gradient microbeams

    , Article Applied Mathematical Modelling ; Volume 37, Issue 18-19 , 2013 , Pages 8363-8382 ; 0307904X (ISSN) Vatankhah, R ; Kahrobaiyan, M. H ; Alasty, A ; Ahmadian, M. T ; Sharif University of Technology
    2013
    Abstract
    In this paper, the strain gradient theory, a non-classical continuum theory able to capture the size effect happening in micro-scale structures, is employed in order to investigate the size-dependent nonlinear forced vibration of Euler-Bernoulli microbeams. The nonlinearities are caused by mid-plane stretching and nonlinear external forces such as van-der-Waals force. The nonlinear governing equations of the microbeams are solved analytically utilizing the perturbation techniques. The primary, super-harmonic and sub-harmonic resonances of a microbeam are studied and the size-dependency of the frequency responses is assessed. The results indicate that the nonlinear forced vibration behavior... 

    Influence of fringing field effect on the pull-in of size dependent micro-beams

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 9 November 2012 through 15 November 2012 ; Volume 9, Issue PARTS A AND B , November , 2012 , Pages 577-580 ; 9780791845257 (ISBN) Darvishian, A ; Moeenfard, H ; Ahmadian, M. T ; Sharif University of Technology
    2012
    Abstract
    This study investigates influence of fringing field effect on the voltage dependent behavior of electrostatically actuated micro-beams. For this purpose, the size dependent beam model is used. Strain gradient formulation is utilized to consider size effects. The effect of fringing field effect on the beam's behavior is investigated and it is shown that lack of considering the fringing field effect in the formulation of the problem may lead to considerable error in predicting the size dependent micro-beams behavior under the effect of electrostatic actuation. The results of this research can be used for safe and stable design of electrostatically actuated micro-beams  

    Developing a new pressure measurement mechanism based on squeeze film damping effect

    , Article Proceedings - 2011 2nd International Conference on Control, Instrumentation and Automation, ICCIA 2011, 27 December 2011 through 29 December 2011 ; Dec , 2012 , Pages 800-803 ; ISBN: 9781467316897 Ghafari, A ; Ghanbari, A ; Kamanzadeh, S ; Abbasian, K ; Saghir, H ; Sharif University of Technology
    IEEE Computer Society  2012
    Abstract
    This paper introduces a novel approach for measuring low pressures based on MEMS technology. In this technique the mechanism of squeeze film damping is used. A voltage is applied to a fixed-fixed MEMS beam and its step response is obtained; for each pressure there is a different response. Then the settling time is measured and we can relate each settling time with a defined pressure. Here, first we use some equations to relate pressure with the squeeze film damping effect; after that we use a micro beam model and relate its parameters with pressure. Then we use numerical analysis and simulation to show the procedure of pressure measuring. All simulation results are shown and discussed  

    Size-dependent analysis of thermoelastic damping in electrically actuated microbeams

    , Article Mechanics of Advanced Materials and Structures ; Volume 28, Issue 9 , 2021 , Pages 952-962 ; 15376494 (ISSN) Borjalilou, V ; Asghari, M ; Sharif University of Technology
    Bellwether Publishing, Ltd  2021
    Abstract
    This paper presents an analytical expression for the thermoelastic damping (TED) in electrically actuated microbeams based on the nonclassical continuum theory of the modified couple stress (MSC) and the nonclassical heat conduction model of the dual-phase-lag (DPL). This expression for TED captures small-scale effects. The coupled equations of motion and heat conduction are first derived. Then, the set of coupled governing equations are analytically dealt, and the real and imaginary parts of frequency are extracted in the framework of the complex frequency approach. Next, a closed-form relation for describing TED in electrically actuated microbeams is obtained which captures the small-scale... 

    Dynamic analysis of electrostatically actuated nanobeam based on strain gradient theory

    , Article International Journal of Structural Stability and Dynamics ; Volume 15, Issue 4 , 2014 ; ISSN: 02194554 Miandoab, E. M ; Pishkenari, H. N ; Yousefi Koma, A ; Sharif University of Technology
    Abstract
    In this study, dynamic response of a micro- and nanobeams under electrostatic actuation is investigated using strain gradient theory. To solve the governing sixth-order partial differential equation, mode shapes and natural frequencies of beam using Euler–Bernoulli and strain gradient theories are derived and then compared with classical theory. Galerkin projection is utilized to convert the partial differential equation to ordinary differential equations representing the system mode shapes. Accuracy of proposed one degree of freedom model is verified by comparing the dynamic response of the electrostatically actuated micro-beam with analogue equation and differential quadrature methods.... 

    Stabilization of a vibrating non-classical micro-cantilever using electrostatic actuation

    , Article Scientia Iranica ; Volume 20, Issue 6 , 2013 , Pages 1824-1831 ; 10263098 (ISSN) Vatankhah, R ; Karami, F ; Salarieh, H ; Alasty, A ; Sharif University of Technology
    Sharif University of Technology  2013
    Abstract
    A closed-loop control methodology is investigated for stabilization of a vibrating non-classical micro-scale Euler-Bernoulli beam with nonlinear electrostatic actuation. The dimensionless form of governing nonlinear Partial Differential Equation (PDE) of the system is introduced. The Galerkin projection method is used to reduce the PDE of system to a set of nonlinear Ordinary Differential Equations (ODE). In non-classical micro-beams, the constitutive equations are obtained based on the non-classical continuum mechanics. In this work, proper control laws are constructed to stabilize the free vibration of non-classical micro-beams whose governing PDE is derived based on the modified strain... 

    A general closed-form solution for the static pull-in voltages of electrostatically actuated MEMS/NEMS

    , Article Physica E: Low-Dimensional Systems and Nanostructures ; Volume 90 , 2017 , Pages 7-12 ; 13869477 (ISSN) Maani Miandoab, E ; Nejat Pishkenari, H ; Meghdari, A ; Fathi, M ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    In this article, an analytical method for calculating pull-in voltage is proposed. This method can accurately predict pull-in voltage of clamped-free, clamped-clamped and curved micro- and nano-beams. In this study, mid-plane stretching, axial stress, initial deformation and the effect of size are taken into account. To achieve this goal, governing equation of beam based on modified couple stress theory was first derived and then transformed to a single degree of freedom (D.O.F) model by Galerkin method. In this model, electrostatic force appears in integral form which is approximated to non-integral form employing Genetic Algorithm. This single degree of freedom model provides means for... 

    Vibration boundary control of micro-cantilever timoshenko beam using piezoelectric actuators

    , Article Scientia Iranica ; Volume 25, Issue 2B , 2018 , Pages 711-720 ; 10263098 (ISSN) Mehrvarz, A ; Salarieh, H ; Alasty, A ; Vatankhah, R ; Sharif University of Technology
    Sharif University of Technology  2018
    Abstract
    One of the methods of force/moment exertion on micro beams is utilizing piezoelectric actuators. In this paper, considering the effects of the piezoelectric actuator on asymptotic stability achievement, the boundary control problem for the vibration of a clamped-free micro-cantilever Timoshenko beam is addressed. To achieve this purpose, the dynamic equations of the beam actuated by a piezoelectric layer laminated on one side of the beam are extracted. The control law was implemented so that vibrations of the beam could be decayed. This control law was achieved based on feedback of time derivatives of boundary states of the beam. The obtained control was applied in the form of piezoelectric... 

    Static pull-in analysis of electrostatically actuated functionally graded micro-beams based on the modified strain gradient theory

    , Article International Journal of Applied Mechanics ; Volume 10, Issue 3 , 2018 ; 17588251 (ISSN) Taati, E ; Sina, N ; Sharif University of Technology
    World Scientific Publishing Co. Pte Ltd  2018
    Abstract
    In this paper, the static pull-in behavior of electrostatically actuated functionally graded (FG) micro-beams resting on an elastic medium is studied using the modified strain gradient (MSG) theory. To this end, the equilibrium equation along with classical and non-classical boundary conditions is obtained by considering the fringing field and elastic foundations effects within the principle of minimum total potential energy. Also, the elastic medium is composed of a shear layer (Pasternak foundation) and a linear normal layer (Winkler foundation). The governing differential equation is solved for cantilever and doubly fixed FG beams using an iterative numerical method. This method is a... 

    Size-dependent strain gradient-based thermoelastic damping in micro-beams utilizing a generalized thermoelasticity theory

    , Article International Journal of Applied Mechanics ; Volume 11, Issue 1 , 2019 ; 17588251 (ISSN) Borjalilou, V ; Asghari, M ; Sharif University of Technology
    World Scientific Publishing Co. Pte Ltd  2019
    Abstract
    The small-scale effects on the thermoelastic damping (TED) in Euler-Bernoulli micro-beams is investigated in this study. To this purpose, by utilizing the strain gradient theory (SGT) and the dual-phase-lag (DPL) heat conduction model, the coupled equations of motion and heat conduction are derived. By solving these equations simultaneously and using the Galerkin method, the real and imaginary parts of the frequency and the amount of TED in thin micro-beams are obtained. The results predicted by SGT are compared with those given by the modified couple stress theory (MCST) and the classical continuum theory. In addition, TED is calculated on the basis of energy dissipation approach which... 

    Size-dependent strain gradient-based thermoelastic damping in micro-beams utilizing a generalized thermoelasticity theory

    , Article International Journal of Applied Mechanics ; Volume 11, Issue 1 , 2019 ; 17588251 (ISSN) Borjalilou, V ; Asghari, M ; Sharif University of Technology
    World Scientific Publishing Co. Pte Ltd  2019
    Abstract
    The small-scale effects on the thermoelastic damping (TED) in Euler-Bernoulli micro-beams is investigated in this study. To this purpose, by utilizing the strain gradient theory (SGT) and the dual-phase-lag (DPL) heat conduction model, the coupled equations of motion and heat conduction are derived. By solving these equations simultaneously and using the Galerkin method, the real and imaginary parts of the frequency and the amount of TED in thin micro-beams are obtained. The results predicted by SGT are compared with those given by the modified couple stress theory (MCST) and the classical continuum theory. In addition, TED is calculated on the basis of energy dissipation approach which...