Loading...
Search for: micro-electro-mechanical-system
0.007 seconds

    Nonlocal and strain gradient based model for electrostatically actuated silicon nano-beams

    , Article Microsystem Technologies ; Vol. 21, Issue 2 , 2014 , pp. 457-464 ; Online ISSN: 1432-1858 Miandoab, E. M ; Yousefi-Koma, A ; Pishkenari, H. N ; Sharif University of Technology
    Abstract
    Conventional continuum theory does not account for contributions from length scale effects which are important in modeling of nano-beams. Failure to include size-dependent contributions can lead to underestimates of deflection, stresses, and pull-in voltage of electrostatic actuated micro and nano-beams. This research aims to use nonlocal and strain gradient elasticity theories to study the static behavior of electrically actuated micro- and nano-beams. To solve the boundary value nonlinear differential equations, analogue equation and Gauss–Seidel iteration methods are used. Both clamped-free and clamped–clamped micro- and nano-beams under electrostatical actuation are considered where... 

    Study of nonlinear dynamics and chaos in MEMS/NEMS resonators

    , Article Communications in Nonlinear Science and Numerical Simulation ; Volume 22, Issue 1-3 , May , 2015 , Pages 611-622 ; 10075704 (ISSN) Miandoab, E. M ; Yousefi Koma, A ; Pishkenari, H. N ; Tajaddodianfar, F ; Sharif University of Technology
    Elsevier  2015
    Abstract
    With the successes in numerous applications from signal filtering to chemical and mass sensing, micro- and nano-electro-mechanical resonators continue to be one of the most widely studied topics of the micro-electro-mechanical systems community. Nonlinearities arising out of different sources such as mid-plane stretching and electrostatic force lead to a rich nonlinear dynamics in the time response of these systems which should be investigated for appropriate design and fabrication of them. Motivated by this need, present study is devoted to analyzing the nonlinear dynamics and chaotic behavior of nano resonators with electrostatic forces on both sides. Based on the potential function and... 

    Design, simulation and fabrication of a MEMS accelerometer by using sequential and pulsed-mode DRIE processes

    , Article Journal of Micromechanics and Microengineering ; Volume 27, Issue 1 , 2017 ; 09601317 (ISSN) Gholamzadeh, R ; Jafari, K ; Gharooni, M ; Sharif University of Technology
    Institute of Physics Publishing  2017
    Abstract
    A sensitive half-bridge MEMS accelerometer fabricated by sequential and pulsed-mode processes is presented in this paper. The proposed accelerometer is analyzed by using conventional equations and the finite element method. The micromachining technology used in this work relies on two processes: sequential and pulsed-mode. In the sequential deep reactive ion etching process, a mixture of hydrogen and oxygen with a trace value of SF6 is used instead of polymeric material in the passivation step. The pulsed-mode process employs periodic hydrogen pulses in continuous fluorine plasma. Because of the continuous nature of this process, plus the in situ passivation caused by the hydrogen pulses,... 

    Thermal buckling and forced vibration characteristics of a porous GNP reinforced nanocomposite cylindrical shell

    , Article Microsystem Technologies ; Volume 26, Issue 2 , 2020 , Pages 461-473 Ebrahimi, F ; Hashemabadi, D ; Habibi, M ; Safarpour, H ; Sharif University of Technology
    Springer  2020
    Abstract
    In this research, thermal buckling and forced vibration characteristics of the imperfect composite cylindrical nanoshell reinforced with graphene nanoplatelets (GNP) in thermal environments are presented. Halpin–Tsai nanomechanical model is used to determine the material properties of each layer. The size-dependent effects of GNPRC nanoshell is analyzed using modified couple stress theory. For the first time, in the present study, porous functionally graded multilayer couple stress (FMCS) parameter which changes along the thickness is considered. The novelty of the current study is to consider the effects of porosity, GNPRC, FMCS and thermal environment on the resonance frequencies, thermal... 

    Dynamic pull-in instability of electrostatically actuated beams incorporating Casimir and van der Waals forces

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 224, Issue 9 , 2010 , Pages 2037-2047 ; 09544062 (ISSN) Moghimi-Zand, M ; Ahmadian, M.T ; Sharif University of Technology
    2010
    Abstract
    In this study, influences of intermolecular forces on the dynamic pull-in instability of electrostatically actuated beams are investigated. The effects of midplane stretching, electrostatic actuation, fringing fields, and intermolecular forces are considered. The boundary conditions of the beams are clamped-free and clamped-clamped. A finite-element model is developed to discretize the governing equations, and Newmark time discretization is then employed to solve the discretized equations. The static pull-in instability is investigated to validate the model. Finally, dynamic pull-in instability of cantilevers and double-clamped beams are studied considering the Casimir and van der Waals... 

    Accuracy improvement of GPS/INS navigation system using extended kalman filter

    , Article 6th International Conference on Control, Instrumentation and Automation, ICCIA 2019, 30 October 2019 through 31 October 2019 ; 2019 ; 9781728158150 (ISBN) Abbasi, P ; Haeri, M ; Iranian Society of Instrumentation and Control Engineers; Smart/Micro Grids Research Center; University of Kurdistan ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Inertial navigation is a method for determining position and orientation of a vehicle, which operates according to Newton's laws of motion. Due to continual increase of output error because of measurement noise, bias, misalignment and so on, one may need one or more additional navigation systems to improve accuracy in long-Term navigation. In this paper, the error compensation based on GPS/INS data fusion algorithm is studied. Then, by designing a DSP processor-based hardware, GPS and INS data are recorded and GPS/INS data fusion algorithm is implemented. Results indicate that the accuracy of the positioning is improved and position, velocity, and orientation errors are confined to a limited... 

    Effects of couple stresses on the in-plane vibration of micro-rotating disks

    , Article JVC/Journal of Vibration and Control ; Volume 26, Issue 13-14 , 2020 , Pages 1246-1259 Bagheri, E ; Jahangiri, M ; Asghari, M ; Sharif University of Technology
    SAGE Publications Inc  2020
    Abstract
    Micro-rotating disks are extensively used in micro-electromechanical systems such as micro-gyroscopes and micro-rotors. Because of the sensitivity of these elements, enough knowledge about the mechanical behavior of these structures is an essential matter for designers and fabricators. The small-scale effects on the in-plane free vibration of such micro-disks present an important aspect of the mechanical behavior of these elements. The small-scale effects on the in-plane free vibration of these micro-disks are investigated in this study using the modified couple stress theory. By using the Hamilton principle, the partial differential equations governing the coupled radial and tangential... 

    Optimization-based gravity-assisted calibration and axis alignment of 9-degrees of freedom inertial measurement unit without external equipment

    , Article Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering ; Volume 234, Issue 2 , 2020 , Pages 192-207 Razavi, H ; Salarieh, H ; Alasty, A ; Sharif University of Technology
    SAGE Publications Ltd  2020
    Abstract
    Applicable in numerous fields, low-cost micro-electromechanical system inertial measurement units often require on-sight calibration by the end user due to the existence of systematic errors. A 9-degrees of freedom inertial measurement unit comprises a tri-axis accelerometer, a tri-axis gyroscope, and a tri-axis magnetometer. Various proposed multi-position calibration methods can calibrate tri-axis accelerometers and magnetometers to a degree. Yet the full calibration of a tri-axis gyroscope and axis alignment of all the sensors still often requires equipment such as a rate table to generate a priori known angular velocities and attitudes or relies on the disturbance-prone magnetometer... 

    Application of piezoelectric and functionally graded materials in designing electrostatically actuated micro switches

    , Article Proceedings of the ASME Design Engineering Technical Conference, 15 August 2010 through 18 August 2010 ; Volume 4 , August , 2010 , Pages 613-620 ; 9780791844120 (ISBN) Hosseinzadeh, A ; Ahmadian, M. T ; Design Engineering Division and Computers in Engineering Division ; Sharif University of Technology
    2010
    Abstract
    In this research, a functionally graded microbeam bonded with piezoelectric layers is analyzed under electric force. Static and dynamic instability due to the electric actuation is studied because of its importance in micro electro mechanical systems, especially in micro switches. In order to prevent pull-in instability, two piezoelectric layers are used as sensor and actuator. A current amplifier is used to supply input voltage of the actuator from the output of the sensor layer. Using Hamilton's principle and Euler-Bernoulli theory, equation of motion of the system is obtained. It is shown that the load type (distributed or concentrated) applied to the microbeam from the piezoelectric...