Loading...
Search for: micro-scales
0.005 seconds
Total 38 records

    Comment on "A micro scale Timoshenko beam model based on strain gradient elasticity theory

    , Article European Journal of Mechanics, A/Solids ; 2014 ; ISSN: 09977538 Nojoumian, M. A ; Salarieh, H ; Sharif University of Technology
    Abstract
    A micro scale Timoshenko beam was modeled with strain gradient theory in "A micro scale Timoshenko beam model based on strain gradient elasticity theory" by Wang et al., European Journal of Mechanics - A/Solids, vol. 29, pp. 591-599, 7//2010. Looking at the modeling of the beam, a mistake in deriving the effect of classical moment has occurred. The classical boundary conditions of a Timoshenko beam could not be derived going backward from the strain gradient Timoshenko beam theory which has been presented in aforementioned paper. In this comment, the contradiction has been shown and the correct form of the boundary conditions and final equations has been derived  

    Comment on “A micro scale Timoshenko beam model based on strain gradient elasticity theory”

    , Article European Journal of Mechanics, A/Solids ; Volume 60 , 2016 , Pages 361-362 ; 09977538 (ISSN) Nojoumian, M. A ; Salarieh, H ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    A micro scale Timoshenko beam was modeled with strain gradient theory in “A micro scale Timoshenko beam model based on strain gradient elasticity theory” by Wang et al., European Journal of Mechanics – A/Solids, vol. 29, pp. 591–599, 7//2010. Looking at the modeling of the beam, a mistake in deriving the effect of classical moment has occurred. The classical boundary conditions of a Timoshenko beam could not be derived going backward from the strain gradient Timoshenko beam theory which has been presented in aforementioned paper. In this comment, the contradiction has been shown and the correct form of the boundary conditions and final equations has been derived  

    Motion Control of Two Magnetic Microrobots

    , M.Sc. Thesis Sharif University of Technology Yousefi, Masoud (Author) ; Nejat, Hossein (Supervisor)
    Abstract
    Microrobots have the potential to access small spaces for manipulation or for acting as a sensor. Magnetic microrobots are the most common types of microrobots. Magnetic microrobots have gained particular traction for medical applications due to safety of tissues. For instance, disease diagnosis, minimally invasive surgery and cell manipulation are potential applications of magnetic microrobots. The performance of a single microrobot could be improved by using multiple robots. For example each microrobot could carry a small payload to a goal inside a microfluidic channel, or could assemble fast and in parallel. In order to employ multiple robots, it is necessary to control each microrobot... 

    Sensitivity Analysis of Piezoelectrical Actuator Microgripper

    , M.Sc. Thesis Sharif University of Technology Zahedi, Amin (Author) ; Ramezani, Asghar (Supervisor) ; Ghaemi Osgouie, Kambiz (Supervisor)
    Abstract
    Increasing and diversified use of micro electromechanical components necessitates further development of methods for their secure gripping and transfer. In this research, a piezoelectrically driven microgripper including two gripping sets with four arms has been designed. The system can hold and handle microparts from 100 to 150 microns by applying corresponding voltages between 80 to 20 volts. The design is such that after positioning the work piece between the two microgripper arms the piezoelectric comb-drive actuators are activated. Then the two gripping arms are moved toward each other and ultimately grasp the work piece. In order to determine the behavior of the... 

    The Analysis of Cracked Atomic Force Microscope Micro-Cantilever by Strain Gradient Theory

    , M.Sc. Thesis Sharif University of Technology Ganji, Hamid (Author) ; Asghari, Mohsen (Supervisor)
    Abstract
    The present study deals with the analysis of Atomic Microscope with crack by making use of Strain Gradient Elasticity theory. Empirical observations represent that in micro dimensions, materials show behaviors, which the classic continuum mechanics theories are not able to explain. Thus, taking advantage of non-classic theories, which are capable of explaining such phenomena or behaviors in analyzing materials in micro dimensions seems necessary and of much significance. In this direction, by applying an Euler-Bernoulli beam assumption and neglecting the shear effects, governing equations and boundary conditions of the problem were obtained via taking advantage of variations in Hamilton... 

    A strain gradient based yield criterion

    , Article International Journal of Engineering Science ; Vol. 77 , 2014 , pp. 45-54 ; ISSN: 00207225 Rahaeifard, M ; Ahmadian, M. T ; Firoozbakhsh, K ; Sharif University of Technology
    Abstract
    The classical yield criteria do not describe the yield size-dependency that has been observed in micro-scale structures (Fleck, Muller, Ashby, & Hutchinson, 1994; Stolken and Evans 1998; Moreau et al. 2005), and may also significantly underestimate the yield loads of structures at micron and sub-micron scales (Son, Jeong, & Kwon, 2003; Liu et al., 2013). The present paper suggests a specific size-dependent yield criterion based on the strain gradient theory that is aimed at addressing this inadequacy. In order to develop the strain gradient based yield criterion, the deviatoric part of the strain energy is calculated based on this theory and equated to the deviatoric strain energy of a... 

    On the static pull-in of circular microplates under capillary force

    , Article ASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011 ; Volume 11 , 2011 , Pages 401-405 ; 9780791854976 (ISBN) Kahrobaiyan, M. H ; Fallah, A ; Bozorgzadeh, S ; Firoozbakhsh, K ; Ahmadian, M. T ; Sharif University of Technology
    Abstract
    In this paper, the static pull-in phenomenon is investigated in circular micro-plates subjected to capillary force. The capillary force appears in micro-scale structures due to presence of a liquid bridge. The governing equation of a circular micro-plate subjected to capillary force is presented and the static deflection of a fully-clamped circular plate is evaluated. Moreover, the effect of the normalized adhesion tension caused due to the capillary force on the static pull-in of the micro-plate is assessed  

    A holistic survey on mechatronic Systems in Micro/Nano scale with challenges and applications

    , Article Journal of Micro-Bio Robotics ; 2021 ; 21946418 (ISSN) Ghanbarzadeh Dagheyan, A ; Jalili, N ; Ahmadian, M. T ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    Micro/Nano mechatronic systems might be defined as systems that include nano- or micro-scale components. These components can be sensors, actuators, and/or physical structures. Furthermore, the high-precision control laws for such small scales are important to ensure stability, accuracy, and precision in these systems. In this writing, four categories of such small-scale systems are considered by providing multifarious novel or key examples from the literature: control engineering and modeling, design and fabrication, measurement engineering, and sensor/actuator development. The applications discussed in the examples vary from nano-positioners, crucial in systems such as atomic force... 

    The sliding frictional contact problem in two dimensional graded materials loaded by a flat stamp

    , Article Advanced Materials Research, 7 January 2012 through 8 January 2012 ; Volume 463-464 , January , 2012 , Pages 336-342 ; 10226680 (ISSN) ; 9783037853634 (ISBN) Khajehtourian, R ; Adibnazari, S ; Tashi, S ; Sharif University of Technology
    2012
    Abstract
    In this article, the sliding frictional contact problem for a half-plane which is graded in two dimensions is studied. The effect of medium properties gradient and coefficient of friction in contact mechanics of two dimensional (2D) graded materials which is loaded by a flat stamp have been investigated by developing two Finite Element (FE) models, in macro and micro scales. Discretizing the graded half-plane by quadrants for whose material properties are specified at the centroids by Mori-Tanaka method in both directions has been used to model the 2D FGM in macro scale. In micro scale, the ideal solid quadrant particles which are spatially distributed in a homogeneous matrix used to model... 

    One Dimensional and Two Dimensional Numerical Investigation of Micro Scale Combustion

    , M.Sc. Thesis Sharif University of Technology Irani Rahaghi, Abolfazl (Author) ; Saidi, Mohammad Said (Supervisor) ; Saidi, Mohammad Hasan (Supervisor) ; Shafii, Mohammad Behshad (Supervisor)
    Abstract
    In this paper, a one-dimensional and two-dimensional numerical approach is used to study the effect of various parameters such as micro combustor height, mass flow rate and external convection heat transfer coefficient on the temperature and species mass fraction profiles. A premixed mixture of H2-Air with a multi-step chemistry (9 species and 19 reactions) is used. The transient gas phase energy and species conservation equations result in an Advection-Diffusion-Reaction system (A-D-R) that leads to two stiff systems of PDEs, which can not be solved by conventional Computational Fluid Dynamics (CFD) methods. In the present work, Strang splitting method, which is suitable for nonlinear stiff... 

    Characterization of Sulfur Protective Catalyst and Simulation of the Process of Removing Sulfur from Naphtha Product

    , M.Sc. Thesis Sharif University of Technology Yousefi, Ardavan (Author) ; Baghalha, Morteza (Supervisor) ; Kazemini, Mohammad (Supervisor)
    Abstract
    Because of the importance of purification units at the refineries, in this research the process of sulfur removing compounds from light naphtha product with 1 ppm concentration by adsorption method in a fixed bed tower was simulated by COMSOL Multiphysics software. In this work, simulation was done using two macro and micro perspectives. In the Macro-scale mass transfer takes place between the spherical particles of catalyst and in the micro-scale mass transfer takes place within the spherical particles and these two scales were coupled together by reaction rate variable. In Macro-scale one-dimensional and two-dimensional geometry were considered for model. Naturally, the result of the... 

    Innovative Theories of Micro and Nano Ellipsoidal Inclusion and Inhomogeneity in Magneto-electro-elastic Media with General Anisotropy

    , Ph.D. Dissertation Sharif University of Technology Rashidinejad, Ehsan (Author) ; Mohammadi Shodja, Hossein (Supervisor)
    Abstract
    In the current work, the two- and three-dimensional electro-elastic fields of periodically as well as arbitrarily distributed interacting quantum wires (QWRs) and interacting quantum dots (QDs) of arbitrary shapes within a piezoelectric matrix are studied analytically. The lattice mismatch between the QWR/QD and the barrier is accounted through prescribing an initial misfit strain field within the QWR/QD. The distinction between the electro-mechanical properties of the QWR/QD and those of the barrier is treated by introducing a novel electro-mechanical equivalent inclusion method in Fourier space (FEMEIM). Moreover, the theory can readily treat cases where the QWRs/QDs are multi-phase or... 

    Analysis of Micro Rotating Disk Based on the Strain Gradient Elestisity

    , M.Sc. Thesis Sharif University of Technology Danesh Kaftroody, Vahid (Author) ; Asghari, Mohsen (Supervisor)
    Abstract
    In the present study, we analyzed the mechanical behavior of micro rotating disk based on the most general form of strain gradient elasticity. According to the fact that micro rotating disks have an important role in MEMS, it is necessary to present an exact analysis of their mechanical behavior. It is noticed experimentally that materials behave stronger in deformation as they get smaller. The classical continuum theory is not capable to predict such behavior; therefore, it is essential to use one of the non-classical continuum theories to analyze the material in micro scales, which can capture this phenomenon. In this work, the strain gradient theory is utilized to derive the governing... 

    The influence of grain size and grain size distribution on sliding frictional contact in laterally graded materials

    , Article Mechatronics and Applied Mechanics, Hong Kong, 27 December 2011 through 28 December 2011 ; Volume 157-158 , 2012 , Pages 964-969 ; 16609336 (ISSN); 9783037853801 (ISBN) Khajehtourian, R ; Adibnazari, S ; Tashi, S ; 2011 International Conference; on Mechatronics and Applied Mechanics, ICMAM2011 ; Sharif University of Technology
    2012
    Abstract
    The sliding frictional contact problem for a laterally graded half-plane has been considered. Two finite element (FE) models, in macro and micro scales have been developed to investigate the effective parameters in contact mechanics of laterally graded materials loaded by flat and triangular rigid stamps. In macro scale model, the laterally graded half-plane is discretized by piecewise homogeneous layers for which the material properties are specified at the centroids by Mori-Tanaka method. In micro scale model, functionally graded material (FGM) structure has been modeled as ideal solid quadrant particles which are spatially distributed in a homogeneous matrix. Boundary conditions and... 

    Dissipative particle dynamics simulation of electroosmotic flow in nanoscale channels

    , Article 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL, 4 January 2010 through 7 January 2010 ; 2010 ; 9781600867392 (ISBN) Darbandi, M ; Zakeri, R ; Schneider, G. E ; Sharif University of Technology
    2010
    Abstract
    This Paper presents the simulation of electroosmotic flow in nanochannels using the dissipative particle dynamics (DPD) method. Most of the past electroosmotic phenomenon studies have been carried out using the continuum flow assumptions. However, there are many electroosmotic applications in nanoscales NEMS and microscales MEMS, which need to be treated using non-continuum flow assumptions. We simulate the electroosmotic flow within the mesoscopic scale using the DPD method. Contrary to the ordinary molecular dynamics method, the DPD method provides less computational costs. We will show that the current DPD results are in very good agreement with other available non-DPD results. To expand... 

    The second strain gradient theory-based Timoshenko beam model

    , Article JVC/Journal of Vibration and Control ; Volume 23, Issue 13 , 2017 , Pages 2155-2166 ; 10775463 (ISSN) Asghari, M ; Momeni, S. A ; Vatankhah, R ; Sharif University of Technology
    SAGE Publications Inc  2017
    Abstract
    The governing equations of motion, together with the associated boundary conditions, are derived for the second strain gradient Timoshenko micro- and nano-beams. The second strain gradient theory is a highly powerful nonclassical continuum theory, capable of capturing the size effects in micro- and nano-scale structures. In case studies, the static and free-vibration behaviors of a hinged-hinged beam are investigated utilizing the presented second strain gradient theory-based Timoshenko beam model. The obtained results are compared with those of the available models in the literature, which are based on the (first) strain gradient theory, the modified couple stress theory, and the classical... 

    Progressive damage analysis of an adhesively bonded composite T-joint under bending, considering micro-scale effects of fiber volume fraction of adherends

    , Article Composite Structures ; Volume 258 , 2021 ; 02638223 (ISSN) Barzegar, M ; Davoodi Moallem, M ; Mokhtari, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In this study, a numerical study on failure assessment and stress distribution on the adhesive region in a composite T-joint under bending load case is investigated using cohesive zone method (CZM). The Finite Element Model (FEM) has been verified with experimental results. To study the load transfer capability of the T-joint, five different adhesives are considered in the adhesive region and the effect of geometrical parameters such as stringer thickness, corner radius, and adherend thickness as well as micromechanical properties of reinforced fiber composite adherends are investigated. Effective properties of two composite adherends including Carbon-Epoxy (IM7/8552) and Glass-Epoxy... 

    Dynamics and control of a novel microrobot with high maneuverability

    , Article Robotica ; Volume 39, Issue 10 , 2021 , Pages 1729-1738 ; 02635747 (ISSN) Esfandbod, A ; Nejat Pishkenari, H ; Meghdari, A ; Sharif University of Technology
    Cambridge University Press  2021
    Abstract
    In this study, we introduce a novel three-dimensional micro-scale robot capable of swimming in low Reynolds number. The proposed robot consists of three rotating disks linked via three perpendicular adjustable rods, actuated by three rotary and three linear motors, respectively. The robot mechanism has an important property which makes it superior to the previously designed micro swimmers. In fact, our goal is designing a micro swimmer which its controllability matrix has full rank and hence it will be capable to perform any desired maneuver in space. After introducing the mechanism and derivation of the dynamical equations of motion, we propose a control method to steer the robot to the... 

    Traffic Source Particle Pollution Distribution Using Micro-scale Simulation

    , M.Sc. Thesis Sharif University of Technology Babaei, Mahdi (Author) ; Hosseini, Vahid (Supervisor)
    Abstract
    Today air pollution has become one of the major urban management concerns. Air pollution could have dangerous effects on human health in short time or long time in many situations. Numerical modelling is one of the most applicable among different ways for predicting pollutant concentration like field measurement, physical model in wind tunnel, and simulation. Modelling of pollutant dispersion is a way for estimating concentration and aggregation of the pollutant near the surface and with different distances from pollution source. In different dispersion models, one of simplest is the Gaussian model. In this approach it is supposed that emission plume obeys from Gaussian distribution and is... 

    A strain gradient Timoshenko beam element: Application to MEMS

    , Article Acta Mechanica ; Vol. 226, issue. 2 , Jul , 2014 , pp. 505-525 ; ISSN: 00015970 Kahrobaiyan, M. H ; Asghari, M ; Ahmadian, M. T ; Sharif University of Technology
    Abstract
    The classical continuum theory not only underestimates the stiffness of microscale structures such as microbeams but is also unable to capture the size dependency, a phenomenon observed in these structures. Hence, the non-classical continuum theories such as the strain gradient elasticity have been developed. In this paper, a Timoshenko beam finite element is developed based on the strain gradient theory and employed to evaluate the mechanical behavior of microbeams used in microelectromechanical systems. The new beam element is a comprehensive beam element that recovers the formulations of strain gradient Euler–Bernoulli beam element, modified couple stress (another non-classical theory)...