Loading...
Search for: microbial-fuel-cells--mfcs
0.003 seconds

    A compact versatile microbial fuel cell from paper

    , Article ASME 2013 11th Int. Conf. on Fuel Cell Science, Eng. and Technology Collocated with the ASME 2013 Heat Transfer Summer Conf. and the ASME 2013 7th Int. Conf. on Energy Sustainability, FUELCELL 2013 ; 2013 ; 9780791855522 (ISBN) Wagner, L. T ; Hashemi, N ; Hashemi, N ; Sharif University of Technology
    2013
    Abstract
    Microbial fuel cells (MFCs) have been a potential green energy source for a long time but one of the problems is that either the technology must be used on a large scale or special equipment have been necessary to keep the fuel cells running such as syringe pumps. Paper-based microbial fuel cells do not need to have a syringe pump to run and can run entirely by themselves when placed in contact with the fluids that are necessary for it to run. Paper-based microbial fuel cells are also more compact than traditional MFCs since the device doesn't need any external equipment to run. The goal of this paper is to develop a microbial fuel cell that does not require a syringe pump to function. This... 

    The coupled microfluidic microbial electrochemical cell as a self-powered biohydrogen generator

    , Article Journal of Power Sources ; Volume 451 , 2020 Fadakar, A ; Mardanpour, M. M ; Yaghmaei, S ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Due to the importance of hydrogen as an effective antioxidant for its applications in therapy, this research reports the fabrication of a coupled microfluidic microbial electrochemical cell (MXC), including microfluidic microbial fuel cells (MFCs) and a microfluidic microbial electrolysis cell (MEC) series in order to perform it as a self-powered biohydrogen generator. Being able to be a platform of implantable medical devices, utilization a non-phatogenic strain of Escherichia coli as the biocatalyst in order to exploit the embodied energy from human blood and excrement and finally the use of cheap and facile materials (<$2 per device) are the exceptional features of the system. The... 

    Effects of chemical, electrochemical, and electrospun deposition of polyaniline coatings on surface of anode electrodes for evaluation of MFCs' performance

    , Article Journal of Environmental Chemical Engineering ; Volume 8, Issue 5 , 2020 Ghasemi, B ; Yaghmaei, S ; Ghaderi, S ; Bayat, A ; Mardanpour, M. M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this research, different coating methods of polyaniline (PANI) on the anode electrodes and their performance in microbial fuel cells (MFCs) were investigated. The performance of systems in a discontinuous state was studied using the high energy content dairy industry wastewater. The phase enrichment assessment was conducted under open circuit potential (OCP) and the performance of MFCs coated with PANI through three methods was evaluated via chemical oxygen demand (COD), polarization, power density, energy coulombic efficiency (ECE), coulombic efficiency (CE), and potential efficiency (PE) values. The results showed the maximum value for the power density of 28Wm-3, CE of 17%, and COD of... 

    A novel model for predicting bioelectrochemical performance of microsized-MFCs by incorporating bacterial chemotaxis parameters and simulation of biofilm formation

    , Article Bioelectrochemistry ; Volume 122 , 2018 , Pages 51-60 ; 15675394 (ISSN) Kalantar, M ; Mardanpour, M. M ; Yaghmaei, S ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Bacterial transport parameters play a fundamental role in microbial population dynamics, biofilm formation and bacteria dispersion. In this study, the novel model was extended based on the capability of microsized microbial fuel cells (MFCs) as amperometric biosensors to predict the cells' chemotactic and bioelectrochemical properties. The model prediction results coincide with the experimental data of Shewanella oneidensis and chemotaxis mutant of P. aeruginosa bdlA and pilT strains, indicating the complementary role of numerical predictions for bioscreening applications of microsized MFCs. Considering the general mechanisms for electron transfer, substrate biodegradation, microbial growth...