Loading...
Search for: microcantilever-beams
0.007 seconds

    A numerical procedure for obtaining the static and pull-in deflection and voltage of capacitive microcantilever beams

    , Article 8th Biennial ASME Conference on Engineering Systems Design and Analysis, ESDA2006, Torino, 4 July 2006 through 7 July 2006 ; Volume 2006 , 2006 ; 0791837793 (ISBN); 9780791837795 (ISBN) Ghaemi Oskouei, B ; Alasty, A ; Sharif University of Technology
    2006
    Abstract
    A numerical procedure is proposed for obtaining the static deflection, pull-in (PI) deflection and PI voltage of electrostatically excited capacitive microcantilever beams. The method is not time and memory consuming as Finite Element Analysis (FEA). Nonlinear ordinary differential equation of the static deflection of the beam is derived, w/wo considering the fringing field effects. The nondimensional parameters upon which PI voltage is dependent are then found. Thereafter, using the parameters and the numerical method, three closed form equations for pull-in voltage are developed. The results are in good agreement with others in literature. Copyright © 2006 by ASME  

    Tip tracking control of a micro-cantilever Timoshenko beam via piezoelectric actuator

    , Article JVC/Journal of Vibration and Control ; Vol. 19, issue. 10 , 2013 , pp. 1561-1574 ; ISSN: 10775463 Shirazi, M. J ; Salarieh, H ; Alasty, A ; Shabani, R ; Sharif University of Technology
    Abstract
    In this paper, the tip tracking control problem of a Timoshenko micro-cantilever beam is investigated. The beam is actuated by a piezoelectric layer laminated on one side of the beam. Dynamic equations of the beam and piezoelectric layer are found using the Hamilton principle. By employing the Galerkin projection method, state space representation of the system is derived. Then, a cascade control loop is used for tracking control of the beam's tip. The cascade control structure consists of an inner loop stabilizer and an outer loop proportional-integral-derivative controller. The stabilizer has a linear feedback form whose states are obtained through a linear observer which is based on the... 

    Effects of the van der Waals force, squeeze-film damping, and contact bounce on the dynamics of electrostatic microcantilevers before and after pull-in

    , Article Nonlinear Dynamics ; Vol. 77, issue. 1-2 , 2014 , p. 87-98 Abtahi, M ; Vossoughi, G ; Meghdari, A ; Sharif University of Technology
    Abstract
    The operational range of microcantilever beams under electrostatic force can be extended beyond pull-in in the presence of an intermediate dielectric layer. In this paper, a systematic method for deriving dynamic equation of microcantilevers under electrostatic force is presented. This model covers the behavior of the microcantilevers before and after the pull-in including the effects of van der Waals force, squeeze-film damping, and contact bounce. First, a polynomial approximate shape function with a time-dependent variable for each configuration is defined. Using Hamilton's principle, dynamic equations of microcantilever in all configurations have been derived. Comparison between modeling... 

    Tip tracking control of a micro-cantilever Timoshenko beam via piezoelectric actuator

    , Article JVC/Journal of Vibration and Control ; Volume 19, Issue 10 , 2013 , Pages 1561-1574 ; 10775463 (ISSN) Shirazi, M. J ; Salarieh, H ; Alasty, A ; Shabani, R ; Sharif University of Technology
    2013
    Abstract
    In this paper, the tip tracking control problem of a Timoshenko micro-cantilever beam is investigated. The beam is actuated by a piezoelectric layer laminated on one side of the beam. Dynamic equations of the beam and piezoelectric layer are found using the Hamilton principle. By employing the Galerkin projection method, state space representation of the system is derived. Then, a cascade control loop is used for tracking control of the beam's tip. The cascade control structure consists of an inner loop stabilizer and an outer loop proportional-integral-derivative controller. The stabilizer has a linear feedback form whose states are obtained through a linear observer which is based on the... 

    Analytical and experimental frequency response analysis of microcantilevers subject to tip-sample interaction

    , Article Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 2009, DETC2009, 30 August 2009 through 2 September 2009 ; Volume 6 , September , 2010 , Pages 575-581 ; 9780791849033 (ISBN) Delnavaz, A ; Mahmoodi, S. N ; Jalili, N ; Zohoor, H ; Sharif University of Technology
    Abstract
    Improvement of microcantilever-based sensors and actuators chiefly depends on how comprehensively they are modeled and precisely formulated. Atomic Force Microscopy (AFM) is the most widespread application of microcantilever beam as a sensor, which is usually influenced by the tip-sample interaction force. For this, vibration of AFM microcantilever probe is analyzed in this paper, along with analytical, numerical and experimental investigation of the influence of the sample interaction force on the microcantilever vibration. Nonlinear integro-partial equation of microcantilever vibration subject to the tip-sample interaction is then derived and numerically simulated. Moreover, multiple time... 

    Full operational range dynamic modeling of microcantilever beams

    , Article Journal of Microelectromechanical Systems ; Volume 22, Issue 5 , May , 2013 , Pages 1190-1198 ; 10577157 (ISSN) Abtahi, M ; Vossoughi, G ; Meghdari, A ; Sharif University of Technology
    Abstract
    Microcantilever beams are frequently utilized in microelectromechanical systems. The operational range of microcantilever beams under electrostatic force can be extended beyond pull-in in the presence of an intermediate dielectric layer, which has a significant effect on the behavior of the system. Three possible configurations of the beam over the operational voltage range are floating, pinned, and flat configurations. In this paper, a systematic method for deriving dynamic equation of microcantilevers for all configurations is presented. First, a static study is performed on deflection profile of the microcantilever under electrostatic force. After that, a polynomial approximate shape... 

    Intelligent vibration control of micro-cantilever beam in MEMS

    , Article 2011 IEEE International Conference on Mechatronics, ICM 2011 - Proceedings, 13 April 2011 through 15 April 2011, Istanbul ; April , 2011 , Pages 336-341 ; 9781612849836 (ISBN) Sarrafan, A ; Zareh, S. H ; Zabihollah, A ; Khayyat, A. A ; Sharif University of Technology
    2011
    Abstract
    Considerable attention has been devoted recently to vibration control using intelligent materials as sensor/actuator. An intelligent control technique using a neural network is proposed for vibration control of micro-cantilever beam with bonded piezoelectric sensor and actuator. Structure modal characteristic analysis is done to determine the optimal configuration of piezoelectric sensor and actuator. With the piezoelectric elements are surface-bonded near the same position to the fixed end of micro-cantilever beam, an optimal controller, linear quadratic Gaussian (LQG), and an intelligent strategy based on neural network are investigated. Finally, the simulation results are given to... 

    Flexural sensitivity of a V-shaped AFM cantilever made of functionally graded materials

    , Article ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010, 12 July 2010 through 14 July 2010 ; Volume 1 , 2010 , Pages 495-501 ; 9780791849156 (ISBN) Rahaeifard, M ; Kahrobaiyan, M. H ; Moeini, S. A ; Ahmadian, M. T ; Hoviattalab, M ; Sharif University of Technology
    Abstract
    In this paper, two lowest resonant frequencies and sensitivities of an AFM V-Shaped microcantilever made of functionally graded materials are studied. The beam is modeled by Euler-Bernoulli beam theory in which rotary inertia and shear deformation is neglected. It is assumed that the beam is made of a mixture of metal and ceramic with properties varying through the thickness of the beam. This variation is function of volume fraction of beam material constituents. The interaction between AFM tip and surface is modeled by two linear springs which expresses the normal and lateral contact stiffness. A relationship is developed to evaluate the sensitivity of FGM micro cantilever beam. Effect of... 

    Sensitivity analysis of atomic force microscope cantilever made of functionally graded materials

    , Article Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 2009, DETC2009, 30 August 2009 through 2 September 2009 ; Volume 6 , August , 2010 , Pages 539-544 ; 9780791849033 (ISBN) Rahaeifard, M ; Kahrobaiyan, M. H ; Ahmadian, M.T ; Sharif University of Technology
    2010
    Abstract
    The purpose of this paper is the enhancement of the AFM sensitivity through the selection of an optimized FGM micro cantilever beam. In this paper, resonant frequencies and sensitivities of first two modes of micro cantilever which is made of functionally graded materials are investigated and a relationship is developed to evaluate the sensitivity of FGM micro cantilever. Effect of volume fraction of materials and surface contact stiffness on the resonant frequencies and sensitivities are studied. The rectangular FGM beam is modeled by an Euler-Bernoulli beam theory. It is assumed that beam is made of a mixture of metal and ceramic with properties varying through the thickness following a... 

    Sensitivity analysis of atomic force microscope cantilever made of functionally graded materials

    , Article Proceedings of the ASME Design Engineering Technical Conference, 30 August 2009 through 2 September 2009, San Diego, CA ; Volume 6 , 2009 , Pages 539-544 ; 9780791849033 (ISBN) Rahaeifard, M ; Kahrobaiyan, M. H ; Ahmadian, M. T ; Sharif University of Technology
    ASME  2009
    Abstract
    The purpose of this paper is the enhancement of the AFM sensitivity through the selection of an optimized FGM micro cantilever beam. In this paper, resonant frequencies and sensitivities of first two modes of micro cantilever which is made of functionally graded materials are investigated and a relationship is developed to evaluate the sensitivity of FGM micro cantilever. Effect of volume fraction of materials and surface contact stiffness on the resonant frequencies and sensitivities are studied. The rectangular FGM beam is modeled by an Euler-Bernoulli beam theory. It is assumed that beam is made of a mixture of metal and ceramic with properties varying through the thickness following a... 

    Nonlinear vibrations of microcantilevers subjected to tip-sample interactions: Theory and experiment

    , Article Journal of Applied Physics ; Volume 106, Issue 11 , 2009 ; 00218979 (ISSN) Delnavaz, A ; Mahmoodi, S. N ; Jalili, N ; Ahadian, M. M ; Zohoor, H ; Sharif University of Technology
    Abstract
    Improvement of microcantilever-based sensors and actuators chiefly depends on their modeling accuracy. Atomic force microscopy (AFM) is the most widespread application of microcantilever beam as a sensor, which is usually influenced by the tip-sample interaction force. Along this line of reasoning, vibration of AFM microcantilever probe is analyzed in this paper, along with analytical and experimental investigation of the influence of the sample interaction force on the microcantilever vibration. Nonlinear integropartial equation of microcantilever vibration subject to the tip-sample interaction is then derived and multiple time scales method is utilized to estimate the tip amplitude while... 

    Analytical and experimental frequency response analysis of microcantilevers subject to tip-sample interaction

    , Article Proceedings of the ASME Design Engineering Technical Conference, 30 August 2009 through 2 September 2009 ; Volume 6 , 2009 , Pages 575-581 ; 9780791849033 (ISBN) Delnavaz, A ; Mahmoodi, S. N ; Jalili, N ; Zohoor, H ; Sharif University of Technology
    Abstract
    Improvement of microcantilever-based sensors and actuators chiefly depends on how comprehensively they are modeled and precisely formulated. Atomic Force Microscopy (AFM) is the most widespread application of microcantilever beam as a sensor, which is usually influenced by the tip-sample interaction force. For this, vibration of AFM microcantilever probe is analyzed in this paper, along with analytical, numerical and experimental investigation of the influence of the sample interaction force on the microcantilever vibration. Nonlinear integro-partial equation of microcantilever vibration subject to the tip-sample interaction is then derived and numerically simulated. Moreover, multiple time... 

    Nonlinear oscillations of viscoelastic microcantilever beam based on modified strain gradient theory

    , Article Scientia Iranica ; Volume 28, Issue 2 , 2021 , Pages 785-794 ; 10263098 (ISSN) Taheran, F ; Ahmadian, M. T ; Firoozbakhsh, K ; Sharif University of Technology
    Sharif University of Technology  2021
    Abstract
    A viscoelastic microcantilever beam is analytically analyzed based on the modified strain gradient theory. Kelvin-Voigt scheme is used to model beam viscoelasticity. By applying Euler-Bernoulli inextensibility of the centerline condition based on Hamilton's principle, the nonlinear equation of motion and the related boundary conditions are derived from shortening effect theory and discretized by Galerkin method. Inner damping, nonlinear curvature effect, and nonlinear inertia terms are also taken into account. In the present study, the generalized derived formulation allows modeling any nonlinear combination such as nonlinear terms that arise due to inertia, damping, and stiffness, as well... 

    Linear and non-linear vibration and frequency response analyses of microcantilevers subjected to tip-sample interaction

    , Article International Journal of Non-Linear Mechanics ; Volume 45, Issue 2 , 2010 , Pages 176-185 ; 00207462 (ISSN) Delnavaz, A ; Mahmoodi, S. N ; Jalili, N ; Zohoor, H ; Sharif University of Technology
    2010
    Abstract
    Despite their simple structure and design, microcantilevers are receiving increased attention due to their unique sensing and actuation features in many MEMS and NEMS. Along this line, a non-linear distributed-parameters modeling of a microcantilever beam under the influence of a nanoparticle sample is studied in this paper. A long-range Van der Waals force model is utilized to describe the microcantilever-particle interaction along with an inextensibility condition for the microcantilever in order to derive the equations of motion in terms of only one generalized coordinate. Both of these considerations impose strong nonlinearities on the resultant integro-partial equations of motion. In...