Loading...
Search for: microcarrier
0.007 seconds

    Microcarriers Development for Stem Cells Cultivation

    , M.Sc. Thesis Sharif University of Technology Karimian Shamsabadi, Mohammad (Author) ; Mashayekhan, Shohre (Supervisor) ; Yaghmaei, Soheyla (Supervisor)
    Abstract
    In general, repair and regeneration of damaged tissues or lost organ is base definition of a technology named tissue engineering. Tissue engineering technology provides innovative path to achieve better medical treatment, including different methods which manipulate natural or synthetic biomaterials mimicking stem cells environmental condition inside the body, in order to facilitate desired cell expansion and differentiation. Recently, application of cell carriers in form of microcarriers which are injectable, biodegradable and biocompatible have attracted significant attention. Due to increasing effectiveness in animal cell culture.
    The aim of this work was fabrication of... 

    Construction of Micro Carriers Composed of Accelular heart Matrix for Heart Tissue Engineering Application

    , M.Sc. Thesis Sharif University of Technology Esmaeili Pourfarhangi, Kamyar (Author) ; Mashayekhan, Shohreh (Supervisor)
    Abstract
    The heart stoke which happens due to an obstruction in the coronary artery can result in the presence of a dead part on the heart muscle called Myocardial Infarction (MI). MI can lead to next heart strokes and even the death of the patient. So far, a great number of biomaterials consisting of natural and synthetic polymers and Extra Cellular Matrix (ECM) of human body have been recommended for being used in tissue engineering approaches aiming to rehabilitate the infarcted site. The use of ECM is recommended for mimicking the microenvironment of the body as much as possible which can be very helpful in proliferation of the cultured cells. In this project, we fabricated a composite... 

    Design and Fabrication of Scaffold Composed of Acellular Cartilage Matrix and Chitosan

    , M.Sc. Thesis Sharif University of Technology Sivandzade, Farzane (Author) ; Mashayekhan, Shohreh (Supervisor) ; Hasanzadeh, Zabihollah (Supervisor)
    Abstract
    Cartilage is an avascular tissue, having limited ability to repair itself. Since the methods for treatment of cartilage defects have been not effective, in recent years, new therapies based on tissue engineering are considered.This paper reports on the development of porous microcarriers composed of acellular matrix of cartilage and natural polymer chitosan. Microcarriers were prepared by electrospray method. Results of mechanical tests, SEM imaging, water uptake behaviour, biodegradation test, and MTT assay demonstrated that the microcarriers composed of 2% (wt) chitosan and 1% (wt) ECM has the best potential for growth and proliferation of primary chondrocyte cells. These results... 

    Optimization of Cell Proliferation on Polymeric Carriers Composed of Accelular Heart Matrix

    , M.Sc. Thesis Sharif University of Technology Ghanbari Asl, Sasan (Author) ; Mashayekhan, Shohreh (Supervisor) ; Abd Khodaei, Mohammad Jafar (Supervisor)
    Abstract
    Following heart coronary artery occlusion, heart stroke (HS) happens which leads to the creation of a dead zone on heart tissue named Myocardial Infarction (MI), the presence of which on a patient’s heart will result in succeeding HSs and the death of the patient. In this study, porous microcarriers capable of being utilized in cardiovascular tissue engineering is fabricated using a mixture of myocardium ectracellular matrix (ECM) and Chitosan (Cs). Results of Elasticity tests, SEM images, swelling behavior, biodegradability test, and cell proliferation assay showed that the scaffold consisting of 3.5% (w/w) Chitosan and 0.66% (w/w) ECM has the best potential in providing cardiovascular... 

    Design and Fabrication of Hydrogel Microcarrier for Tissue Engineering

    , M.Sc. Thesis Sharif University of Technology Radaei, Payam (Author) ; Mashayekhan, Shohre (Supervisor) ; Yaghmaei, Soheila (Supervisor)
    Abstract
    Microcarriers (MCs) are an attractive technology with various applications in tissue engineering. In this study, chitosan/gelatin MCs were fabricated with blends of different ratio of chitosan/gelatin, by using a setup containing high voltage electrostatic field and syringe pump. Optimization of blend ratio, voltage and syringe pump flow carried out by the “Design expert” software leads to fabrication of MCs with constant diameter while having various elasticity. Mechanical strength and elasticity of MCs were determined. Human umbilical cord mesenchymal stem cells (hUCMSCs) were cultured on MCs dynamically by using mini-rocher in an incubator. Cells adhesion on MCs were successfully shown by... 

    Fabrication of porous gelatin-chitosan microcarriers and modeling of process parameters via the RSM method

    , Article International Journal of Biological Macromolecules ; Volume 88 , 2016 , Pages 288-295 ; 01418130 (ISSN) Karimian, S. A. M ; Mashayekhan, S ; Baniasadi, H ; Sharif University of Technology
    Elsevier B.V 
    Abstract
    Porous gelatin-chitosan microcarriers (MCs) with the size of 350 ± 50 μm were fabricated with blends of different gelatin/chitosan (G/C) weight ratio using an electrospraying technique. Response surface methodology (RSM) was used to study the quantitative influence of process parameters, including blend ratio, voltage, and syringe pump flow rate, on MCs diameter and density. In the following, MCs of the same diameter and different G/C weight ratio (1, 2, and 3) were fabricated and their porosity and biocompatibility were investigated via SEM images and MTT assay, respectively. The results showed that mesenchymal stem cells (MSCs) could attach, proliferate, and spread on fabricated porous MCs... 

    Design and Fabrication of Mineral-based Porous Microcarrier for Bone Tissue Regeneration

    , M.Sc. Thesis Sharif University of Technology Haji Abbas, Mohammad Ali (Author) ; Mashayekhan, Shohreh (Supervisor) ; Bahrevari, Mohammad Reza (Co-Supervisor)
    Abstract
    Currently, using biocompatible and injectable polymeric microcarriers as one of the efficient methods to transfer cells and active agents has gained much attention for bone regenerative medicine. However, they have some drawbacks such as weak mechanical stability and lack of mineral materials, which are the major ingredients of the bone tissues. Accordingly, it is expected that mimicking the chemical and physical structure of bone tissues could be valuable in their medical applications. Herein, a new porous biodegradable microcarriers (MCs) made of silk fibroin-oxidized alginate-bioactive glass was fabricated by electrospraying method. Response surface methodology (RSM) was used to study the... 

    Design and fabrication of injectable microcarriers composed of acellular cartilage matrix and chitosan

    , Article Journal of Biomaterials Science, Polymer Edition ; Volume 29, Issue 6 , 2018 , Pages 683-700 ; 09205063 (ISSN) Sivandzade, F ; Mashayekhan, S ; Sharif University of Technology
    Taylor and Francis Inc  2018
    Abstract
    Cartilage is an avascular tissue with limited self-repair ability. Since the methods for treatment of cartilage defects have not been effective, new therapies based on tissue engineering are considered over the recent years. In this study, human cartilage tissue was decellularized and porous injectable microcarriers (MCs) composed of acellular extracellular matrix (ECM) of cartilage tissue and chitosan (CS), with different ECM weight ratios, were fabricated by electrospraying technique to be used in the treatment of articular cartilage defects. Various properties of ECM/CS MCs such as microstructure, mechanical strength, water uptake behaviour, and biodegradability rate were investigated....