Loading...
Search for: microstructure-and-properties
0.009 seconds
Total 28 records

    Mechanical and microstructural properties of cement paste incorporating nano silica particles with various specific surface areas

    , Article Key Engineering Materials, 8 July 2010 through 9 July 2010 ; Volume 478 , July , 2011 , Pages 19-24 ; 10139826 (ISSN) ; 9783037851357 (ISBN) Khaloo, A. R ; Vayghan, A. G ; Bolhasani, M ; Sharif University of Technology
    2011
    Abstract
    In this study, the effect of agglomeration and non-uniform dispersion of silica particles on the mechanical and microstructural properties of cement paste incorporating silica fume and nanosilica (NS) with various specific surface areas (SSA) is experimentally investigated. The SSA and replacement percent of silica particles were considered as test variables and four series of mixes were made including one set of mixes for silica fume with a SSA of 20 m2/g and three sets of mixes for three different types of NS with SSA equal to 90, 200 and 380 m2/g. In each series of mix designs three different cement replacement percents of 1.5%, 3% and 5% were applied. The results indicate that as the SSA... 

    The impact of ZrSiO4 nanoparticles addition on the microstructure and properties of dolomite based refractories

    , Article Ceramics International ; Volume 43, Issue 16 , 2017 , Pages 13932-13937 ; 02728842 (ISSN) Ghasemi Kahrizsangi, S ; Karamian, E ; Gheisari Dehsheikh, H ; Sharif University of Technology
    Abstract
    Dolomite base refractories have advantages such as high refractoriness, potential to produce pure steel molten, high alkaline corrosion resistance, and economical for consumers. However, application of these refractories has been limited due to their high potential to hydration with atmosphere humidity. In this research work, the impact of ZrSiO4 nanoparticles addition on the physical, thermo-mechanical, mechanical, and microstructure of the dolomite base refractories is investigated. Also, XRD and SEM/EDX analyses were used for determining generated ceramic phases and microstructure evaluation, respectively. Up to 3 wt% ZrSiO4 nanoparticles were added to the compositions. Compositions fired... 

    Magnetron-sputtered TixNy thin films applied on titanium-based alloys for biomedical applications: Composition-microstructure-property relationships

    , Article Surface and Coatings Technology ; Volume 349 , 2018 , Pages 251-259 ; 02578972 (ISSN) Nemati, A ; Saghafi, M ; Khamseh, S ; Alibakhshi, E ; Zarrintaj, P ; Saeb, M. R ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Progress in tissue engineering and regenerative medicine necessitates the use of novel materials with promising bio-surface for biomedical applications. In this work, TixNy thin films are applied on biological TC4 substrates in a mixed atmosphere of Ar and N2 via magnetron sputtering system for the protection of TC4 alloy. The effects of N/Ti ratio on the phase structure, growth orientation, contact angle, and the mechanical and corrosion performances of thin films are discussed by implementation of composition-microstructure-property interrelationships. The phase structure of TixNy thin films is changed from amorphous-like to single phase Ti2N structure with increasing N/Ti ratio. In the... 

    The effect of direct and cross-rolling on mechanical properties and microstructure of severely deformed aluminum

    , Article Journal of Materials Engineering and Performance ; Vol. 23, Issue 1 , 2014 , pp. 115-124 ; ISSN: 10599495 Mamaghani, K. R ; Kazeminezhad, M ; Sharif University of Technology
    Abstract
    Severely deformed commercial pure aluminum sheets by constrained groove pressing are direct and crossrolled. The grain size evolution and dislocation density during rolling are studied using Williamson-Hall analysis on x-ray diffraction patterns of the deformed samples. These results and optical microscopy observations show that subsequent direct or cross-rolling of constrained groove pressed aluminum can produce elongated fine grains. The minimum crystallite size is achieved after cross-rolling of constrained groove pressed samples. By direct-rolling or cross-rolling of annealed sheet, the maximum intensity in x-ray diffraction patterns remains on (200) like annealed aluminum but... 

    Mechanical and microstructural investigation of friction stir processed Al1100

    , Article Welding in the World ; Volume 53, Issue SPECIAL ISSUE , 2009 , Pages 253-258 ; 00432288 (ISSN) Nasiri, A. M ; Pouraliakbar, H ; Nikravesh, M ; Kokabi, A. H ; Sharif University of Technology
    Abstract
    Surfaces of cast 1100 aluminum were treated by multi-pass friction stir processing (MP-FSP), which is a solid-state microstructural modification technique using frictional heat and stirring action. An improvement in the mechanical properties was accomplished due to the microstructural modification and reduction of porosities. The yield strengths of the MP-FSPed specimens were significantly increased to about 1.4 times versus that of the base metal. The elongation of MP-FSP sample is about 30% higher than that of the base metal. Also the ultimate tensile strength and hardness of MP-FSPed specimens are improved. Moreover the effect of tool rotation rate and tool travel speed on the mechanical... 

    SiC fines effects on the microstructure and properties of bauxite-based low-cement refractory castables

    , Article Ceramics International ; Volume 45, Issue 13 , 2019 , Pages 16338-16346 ; 02728842 (ISSN) Mavahebi, S ; Bavand vandchali, M ; Nemati, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    In the present paper, the effect of silicon carbide (SiC) fines was studied on the phase and microstructural properties of bauxite-based low-cement refractory castables (LCC) at different firing temperatures. XRD and SEM techniques were employed to evaluate phase and microstructure analysis, and physical/mechanical properties were measured according to standard methods. The results showed that the oxidation of SiC particles related to the oxygen partial pressure and active/passive oxidation behavior of SiC fines could markedly affect the microstructure and properties of bauxite-based LCC fired at high temperatures. Despite the negative influence of addition of SiC fines on cold mechanical... 

    Post-consumer recycled high density polyethylene/polypropylene blend with improved overall performance through modification by impact polypropylene copolymer: morphology, properties and fracture resistance

    , Article Polymer International ; Volume 70, Issue 12 , 2021 , Pages 1701-1716 ; 09598103 (ISSN) Mehrabi Mazidi, M ; Sharifi, H ; Sharif University of Technology
    John Wiley and Sons Ltd  2021
    Abstract
    The effect of an impact polypropylene copolymer (IPC) having excellent stiffness–toughness balance on the microstructure and properties of a blend comprising 80 wt% recycled high density polyethylene (rHDPE) and 20 wt% recycled isotactic polypropylene (rPP) was studied. Morphological observations revealed improved interfacial interactions, a finer dispersion state and a more homogeneous phase morphology upon IPC incorporation into the blend up to 20 wt%. Flexural modulus, flexural strength, tensile strength and tensile ductility were steadily increased with IPC loading, and exhibited 13%, 14%, 35% and 520% improvement at 20 wt% IPC. A monotonic rise in Izod impact energy, accompanied by a... 

    A study of mechanical and microstructures properties of autoclaved aerated concrete containing nano-graphene

    , Article Journal of Building Engineering ; Volume 43 , 2021 ; 23527102 (ISSN) Seddighi, F ; Pachideh, G ; Salimbahrami, S. B ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In recent years, the autoclaved aerated concrete (AAC) has been widely used in the building construction industry, especially for construction of infill walls. However, the AAC suffers from several drawbacks such as low compressive and tensile strength, high water absorption as well as insufficient resistance against impacts. To address such issues, this study evaluates the mechanical properties of the AAC blocks in which, the cement has been replaced with nano-graphene. For this purpose, various replacement ratios (0.2, 0.4, and 0.8) were selected and different tests such as compressive and tensile strength (cylindrical specimens with the size of 10 × 20 cm), impact resistance and water... 

    Effect of electrolyte concentration on microstructure and properties of micro arc oxidized hydroxyapatite/titania nanostructured composite

    , Article Materials Science and Engineering C ; Volume 33, Issue 5 , 2013 , Pages 2555-2561 ; 09284931 (ISSN) Abbasi, S ; Golestani Fard, F ; Mirhosseini, S. M. M ; Ziaee, A ; Mehrjoo, M ; Sharif University of Technology
    2013
    Abstract
    Micro arc oxidation was employed to grow TiO2/hydroxyapatite composite layer on titanium substrate. The correlation between electrolyte concentration, diameter and density of the pores in fabricated layers was investigated. Therefore, the effect of electrolyte concentration on composition and morphology of grown layers was studied using SEM, EDX, XRD and XPS techniques. Samples were coated in electrolytes containing 5, 10 and 15 g/l calcium acetate and 1, 3 and 5 g/l β-glycerophosphate, at optimized voltage for 3 min. Pore size variations obey a similar pattern by the addition of both calcium acetate and β-glycerophosphatein various concentrations based on SEM observations. However,... 

    Effect of 10Ce-TZP/Al2O3 nanocomposite particle amount and sintering temperature on the microstructure and mechanical properties of Al/(10Ce-TZP/Al2O3) nanocomposites

    , Article Materials and Design ; Volume 50 , 2013 , Pages 85-91 ; 02641275 (ISSN) Soltani, N ; Pech Canul, M. I ; Bahrami, A ; Sharif University of Technology
    Elsevier Ltd  2013
    Abstract
    A zirconia/alumina nanocomposite stabilized with cerium oxide (Ce-TZP/Al2O3 nanocomposite) can be a good substitute as reinforcement in metal matrix composites. In the present study, the effect of the amount of 10Ce-TZP/Al2O3 particles on the microstructure and properties of Al/(10Ce-TZP/Al2O3) nanocomposites was investigated. For this purpose, aluminum powders with average size of 30μm were ball-milled with 10Ce-TZP/Al2O3 nanocomposite powders (synthesized by aqueous combustion) in varying amounts of 1, 3, 5, 7, and 10wt.%. Cylindrical-shape samples were prepared by pressing the powders at 600MPa for 60min while heating at 400-450°C. The specimens were then characterized by scanning and... 

    On the parameters influencing chemo-physical properties of rice husk ash and its performance in cement mortars

    , Article Proceedings, Annual Conference - Canadian Society for Civil Engineering ; Volume 2 , 2011 , Pages 1248-1255 ; 9781618392183 (ISBN) Gholizadeh, A ; Khaloo, A. R ; Nasir, S ; Sharif University of Technology
    2011
    Abstract
    One of the most conventional and energy efficient methods to improve the engineering properties of concrete is the utilization of waste materials and by-products. Among agricultural wastes, rice husk ash (RHA) has exhibited the greatest potential to enhance the characteristics of cement mixtures. However, the investigations on the properties and performance of RHA are slim compared to its potential advantages and few systematic studies can be found in the literature regarding parameters influencing the chemo-physical and microstructural characteristics of RHA along with its performance in cement mixtures. In this study, the effect of retention time of rice husk is systematically... 

    An investigation of the microstructures and properties of metal inert gas and friction stir welds in aluminum alloy 5083

    , Article Sadhana - Academy Proceedings in Engineering Sciences ; Volume 36, Issue 4 , 2011 , Pages 505-514 ; 02562499 (ISSN) Yazdipour, A. R ; Shafieim, A ; Aval, H. J ; Sharif University of Technology
    Abstract
    Two different types of welds, Metal Inert Gas (MIG) and Friction Stir Welding (FSW), have been used to weld aluminum alloy 5083. The microstructure of the welds, including the nugget zone and heat affected zone, has been compared in these two methods using optical microscopy. The mechanical properties of the weld have been also investigated using the hardness and tensile tests. The results show that both the methods could successfully be used to weld such alloy. The strength of the joints is comparable to the strength of the base metal in both cases. However, FSWed samples have shown higher strength in comparison to the MIG samples. The results also show that the extension of the heat... 

    Microstructure, mechanical analysis and optimal selection of 7075 aluminum alloy based composite reinforced with alumina nanoparticles

    , Article Materials Chemistry and Physics ; Vol 178 , August , 2016 , Pages 119–127 ; 02540584 (ISSN) Ezatpour, H. R ; Torabi Parizi, M ; Sajjadi, S. A ; Ebrahimi, G. R ; Chaichi, A ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Aluminum metal-matrix nanocomposites (AMMNCs) fabricated by conventional stir-casting process usually show high porosity and poor distribution of nanoparticles within the matrix. In the current study, for the improvement of nanoparticles distribution in the aluminum matrix and enhancement of the mechanical properties, a mixture of Al/nano-Al2O3 powders were injected by pure argon gas into the molten 7075 aluminum alloy and this mixture was extruded at high temperature. Mechanical behavior of the final product was investigated by tensile and compression tests, hardness measurements, Scanning Electron Microscopy (SEM), High Resolution Transmission Electron Microscopy (HRTEM) and Optical... 

    Microstructure, mechanical analysis and optimal selection of 7075 aluminum alloy based composite reinforced with alumina nanoparticles

    , Article Materials Chemistry and Physics ; Volume 178 , 2016 , Pages 119-127 ; 02540584 (ISSN) Ezatpour, H. R ; Torabi Parizi, M ; Sajjadi, S. A ; Ebrahimi, G. R ; Chaichi, A ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Aluminum metal-matrix nanocomposites (AMMNCs) fabricated by conventional stir-casting process usually show high porosity and poor distribution of nanoparticles within the matrix. In the current study, for the improvement of nanoparticles distribution in the aluminum matrix and enhancement of the mechanical properties, a mixture of Al/nano-Al2O3 powders were injected by pure argon gas into the molten 7075 aluminum alloy and this mixture was extruded at high temperature. Mechanical behavior of the final product was investigated by tensile and compression tests, hardness measurements, Scanning Electron Microscopy (SEM), High Resolution Transmission Electron Microscopy (HRTEM) and Optical... 

    Resistance spot welding of martensitic stainless steel: effect of initial base metal microstructure on weld microstructure and mechanical performance

    , Article Materials Science and Engineering A ; Volume 703 , 2017 , Pages 154-161 ; 09215093 (ISSN) Shirmohammadi, D ; Movahedi, M ; Pouranvari, M ; Sharif University of Technology
    Abstract
    This paper addresses the microstructure-properties relationship during resistance spot welding of martensitic stainless steel (MSS). The effect of the initial base metal microstructure (ferritic microstructure in annealed condition vs. partially tempered martensitic in quench and tempered condition) on the weld microstructure evolution is highlighted. Regardless of the initial base metal microstructure, the fusion zone exhibited a predominantly martensitic structure plus some δ-ferrite. The heat affected zone (HAZ) in the quenched and partially tempered (Q-PT) sheet was featured by formation of martensite and carbide in upper-critical zone and tempering of martensite in sub-critical zone.... 

    Mechanical and microstructure properties of deformed Al-Al2O3 nanocomposite at elevated temperature

    , Article Journal of Materials Research ; Volume 32, Issue 6 , 2017 , Pages 1118-1128 ; 08842914 (ISSN) Ezatpour, H. R ; Sajjadi, S. A ; Chaichi, A ; Ebrahimi, G. R ; Sharif University of Technology
    Abstract
    Hot isotherm compression tests were performed in temperature range of 350-500 °C and at strain rates of 0.0005 to 0.5 s-1 for Al6061 alloy reinforced with alumina nanoparticles. Effect of deformation parameters and optimal conditions for hot working this nanocomposite were comprehended thoroughly via hot working data analyses, electron microscopy images, and X-ray diffractograms. The results indicated the severity of hot deformation process and an increase in the activation energy to 320 kJ/mol due to the addition of nanoparticles. Dynamic recovery (DRV) was considered as the individual determinative softening mechanism during hot deformation of this nanocomposite, and no sign of dynamic... 

    On the controllability of phase formation in rapid solidification of high entropy alloys

    , Article Journal of Alloys and Compounds ; Volume 748 , 2018 , Pages 679-686 ; 09258388 (ISSN) Jafary Zadeh, M ; Aitken, Z. H ; Tavakoli, R ; Zhang, Y. W ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    The demonstration of high entropy alloys (HEAs), or more generally multi-principal-element alloys (MPEAs), which display a greater resistance to softening at elevated temperatures and embrittlement at cryogenic temperatures, has offered an accessible alternative alloying process for materials scientists and engineers. Although solidification is a fundamental process in synthesis of alloys which strongly affects their microstructure and properties, a firm understanding of this process in HEAs is scarce. Here, using molecular dynamics (MD) simulations, we study the rapid solidification of the multi-principal-element CoFeNiPd alloy as a prototypical single-phase HEA. Our simulations reveal an... 

    Resistance spot welding of MS1200 martensitic advanced high strength steel: microstructure-properties relationship

    , Article Journal of Manufacturing Processes ; Volume 31 , 2018 , Pages 867-874 ; 15266125 (ISSN) Pouranvari, M ; Sobhani, S ; Goodarzi, F ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    This paper addresses the microstructure and tensile-shear mechanical performance of MS1200 Giga-grade martensitic advanced high strength steel resistance spot welds. The key phase transformations in MS1200 welds were lath martensite formation in the fusion zone (FZ) and upper-critical heat affected zone (HAZ), new ferrite formation in the inter-critical HAZ and martensite tempering in the sub-critical HAZ. The MS1200 welds were featured by a near matching hardness in the fusion zone and under-matching hardness in the heat affected zone (HAZ) compared to the base metal. At certain process window a complete nugget pullout and separation was observed with high post-necking tearing energy. The... 

    Electrodeposition of Ni-WndashB nanocomposite from tartrate electrolyte as alternative to chromium plating

    , Article Surface Engineering ; Volume 25, Issue 5 , 2009 , Pages 382-388 ; 02670844 (ISSN) Hosseini, M. G ; Abdolmaleki, M ; Seyed Sadjadi, S. A ; Raghibi Boroujeni, M ; Arshadi, M. R ; Khoshvaght, H ; Sharif University of Technology
    2009
    Abstract
    The effect of the bath chemistry and operating conditions on the chemical composition, microstructure and properties of NiWmdashB alloys deposited from tartrate baths on working electrode was studied for the first time by the pulsed current method. The investigations included the measurement of the current efficiencies and determination of the tungsten content in the electrodeposits. UV spectrometry was used for characterisation of complex formation. The grain size of deposits was determined by XRD. Also, the morphology of the deposits was studied by SEM. Amorphous NimdashWB alloys were successfully obtained by electrodeposition from the tartrate bath. The corrosion behaviour of NiWmdashB... 

    Duplex stainless steel/martensitic steel dissimilar resistance spot welding: Microstructure-properties relationships

    , Article Welding Journal ; Volume 98, Issue 9 , 2019 , Pages 263S-272S ; 00432296 (ISSN) Sobhani, S ; Pouranvari, M ; Sharif University of Technology
    American Welding Society  2019
    Abstract
    This paper addresses the phase transformations and mechanical performance of dissimilar resistance spot welds between 2304 duplex stainless steel (DSS) and 1.2-GPa martensitic (MS) advanced high-strength steel (AHSS). The solidification mode and transformation path of the fusion zone (FZ) were analyzed. The key metallurgical feature of the FZ was the formation of a duplex microstructure consisting of delta ferrite and martensite. The FZ size at the sheet/sheet interface was the critical factor controlling the fraction of pullout failure during the partial thickness-partial pullout mode, the load-bearing capacity, and the energy absorption capability of the DSS/MS dissimilar resistance spot...