Loading...
Search for: microwave-synthesis
0.01 seconds

    Nickel-doped monoclinic WO3 as high performance anode material for rechargeable lithium ion battery

    , Article Journal of Electroanalytical Chemistry ; Volume 894 , 2021 ; 15726657 (ISSN) Rastgoo Deylami, M ; Javanbakht, M ; Omidvar, H ; Hooshyari, K ; Salarizadeh, P ; Askari, M. B ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    The anode materials are one of the critical components in rechargeable lithium ion batteries (LIBs). The monoclinic tungsten trioxide (mWO3) is introduced as interesting anode electrode for LIBs due to its good structure for intercalation and de-intercalation of lithium ions, high abundance and various oxidation state of tungsten and etc. In this study, we prepare and investigate the effect of various amounts of nickel dopant on characteristics and electrochemical properties of the mWO3 as the anode electrode in a rechargeable LIB. The experimental investigations confirm that the number of nickel atoms has a remarkable effect on controlling spherical particle diameter, crystallite size, and... 

    Effects of morphology on photocatalytic performance of Zinc oxide nanostructures synthesized by rapid microwave irradiation methods

    , Article Superlattices and Microstructures ; Volume 51, Issue 4 , 2012 , Pages 512-522 ; 07496036 (ISSN) Kajbafvala, A ; Ghorbani, H ; Paravar, A ; Samberg, J. P ; Kajbafvala, E ; Sadrnezhaad, S. K ; Sharif University of Technology
    2012
    Abstract
    In this study, two different chemical solution methods were used to synthesize Zinc oxide nanostructures via a simple and fast microwave assisted method. Afterwards, the photocatalytic performances of the produced ZnO powders were investigated using methylene blue (MB) photodegradation with UV lamp irradiation. The obtained ZnO nanostructures showed spherical and flower-like morphologies. The average crystallite size of the flower-like and spherical nanostructures were determined to be about 55 nm and 28 nm, respectively. X-ray diffraction (XRD), scanning electronic microscopy (SEM), Brunauer-Emmett-Teller (BET), room temperature photoluminescence (RT-PL) and UV-vis analysis were used for... 

    Microwave-assisted synthesis of bismuth oxybromochloride nanoflakes for visible light photodegradation of pollutants

    , Article Physica B: Condensed Matter ; Volume 475 , October , 2015 , Pages 14-20 ; 09214526 (ISSN) Bijanzad, K ; Tadjarodi, A ; Moghaddasi Khiavi, M ; Akhavan, O ; Sharif University of Technology
    Elsevier  2015
    Abstract
    BiOBrxCl1-x (0xCl1-x. The UV-visible diffuse reflectance and photoluminescence (PL) spectroscopies revealed the indirect band gap of ∼2.82 eV for the bismuth oxybromochloride nanoflakes. Visible light-assisted photocatalytic studies showed that the degradation efficiency of the as-prepared BiOBrxCl1-x for (100 mL of 10 mg L-1)... 

    Microwave-assisted synthesis of narcis-like zinc oxide nanostructures

    , Article Journal of Alloys and Compounds ; Volume 497, Issue 1-2 , May , 2010 , Pages 325-329 ; 09258388 (ISSN) Kajbafvala, A ; Zanganeh, S ; Kajbafvala, E ; Zargar, H. R ; Bayati, M. R ; Sadrnezhaad, S. K ; Sharif University of Technology
    2010
    Abstract
    Through a fast, simple, low cost, surfactant-free and convenient microwave-assisted route, narcis-like ZnO nanostructures (10-15 nm size) with flower diameters in the range of 1-2.5 μm were synthesized. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy and room temperature photoluminescence (PL) measurements were used to characterize the produced ZnO nanostructures. The principle raw materials - ammonium hydroxide (NH4OH) and zinc acetate dihydrate [Zn(CH3COO)2·2H2O] - were both inexpensive. The method was fast, simple and surfactant-free capable of producing larger quantities of zinc oxide... 

    Fast two-step microwave-activated synthesis of Mn doped ZnS nanocrystals: Comparison of the luminescence and doping process with thermochemical approach

    , Article Journal of Luminescence ; Volume 131, Issue 4 , April , 2011 , Pages 721-726 ; 00222313 (ISSN) Marandi, M ; Hajisalem, G ; Taghavinia, N ; Houshiar, M ; Sharif University of Technology
    2011
    Abstract
    In this work we report a fast two-step microwave activated synthesis of the ZnS:Mn nanocrystals. Zn(NO3)2 and Na2S 2O3 were used as the precursors and Mn(NO 3)2 was employed as the source of the impurity. The aqueous synthesis was based on the heat sensitivity of Na2S 2O3, which releases some S species on heating. Consequently, the reaction was well activated under microwave irradiation resulting in formation of ZnS:Mn nanocrystals. Thioglycerol (TG) was also used as the capping agent and the catalyst of the reaction. The synthesis process was done in two steps, i.e. 1 min irradiation without TG and then injection of TG and continuation of irradiation. ZnS:Mn nanocrystals were quickly formed...