Loading...
Search for: mises-yield-criteria
0.006 seconds

    Application of homotopy-Pade technique in limit analysis of circular plates under arbitrary rotational symmetric loading using von-Mises yield criterion

    , Article Communications in Nonlinear Science and Numerical Simulation ; Volume 15, Issue 4 , 2010 , Pages 1080-1091 ; 10075704 (ISSN) Kargarnovin, M. H ; Faghidian, S. A ; Farjami, Y ; Farrahi, G. H ; Sharif University of Technology
    Abstract
    The upper and lower bound principals of limit analysis are employed to determine the critical loading on solid circular plate with simply supported boundary conditions and subjected to any distributed loading with rotational symmetry. In this study, material behavior follows a rigid perfectly plastic model and yielding obeys the von-Mises criterion. Homotopy analysis method is employed to achieve the analytical solution to the high nonlinear ordinary differential equations governing the problem. This analytic solution has been obtained in terms of convergent series with easily computable terms. The results are verified with the Tresca yield criterion and presented as plots to show the... 

    An analytical framework for the solution of autofrettaged tubes under constant axial strain condition

    , Article ASME 2008 Pressure Vessels and Piping Conference, PVP2008, Chicago, IL, 27 July 2008 through 31 July 2008 ; Volume 5 , July , 2008 , Pages 71-80 ; 0277027X (ISSN); 9780791848289 (ISBN) Hosseinian, E ; Farrahi, G. H ; Movahhedy, M. R ; Pressure Vessels and Piping ; Sharif University of Technology
    2008
    Abstract
    Autofrettage is a technique for introducing beneficial residual stresses into cylinders. Both analytical and numerical methods are used for analysis of the autofrettage process. Analytical methods have been presented only for special cases of autofrettage. In this work, an analytical framework for the solution of autofrettaged tubes with constant axial strain conditions is developed. Material behavior is assumed to be incompressible and two different quadratic polynomials are used for strain hardening in loading and unloading. Clearly, elastic-perfectly plastic and linear hardening materials are special cases of this general model. This material model is convenient for description of the... 

    Semi-exact solution for thermo-mechanical analysis of functionally graded elastic-strain hardening rotating disks

    , Article Communications in Nonlinear Science and Numerical Simulation ; Volume 17, Issue 9 , 2012 , Pages 3747-3762 ; 10075704 (ISSN) Hassani, A ; Hojjati, M. H ; Farrahi, G. H ; Alashti, R. A ; Sharif University of Technology
    Abstract
    In this paper, distributions of stress and strain components of rotating disks with non-uniform thickness and material properties subjected to thermo-elasto-plastic loading are obtained by semi-exact method of Liao's homotopy analysis method (HAM) and finite element method (FEM). The materials are assumed to be elastic-linear strain hardening and isotropic. The analysis of rotating disk is based on Von Mises' yield criterion. A two dimensional plane stress analysis is used. The distribution of temperature is assumed to have power forms with the hotter point located at the outer surface of the disk. A mathematical technique of transformation has been proposed to solve the homotopy equations...