Loading...
Search for: mixed-matrix-membranes
0.006 seconds
Total 31 records

    Gas transport behavior of DMDCS modified MCM-48/polysulfone mixed matrix membrane coated by PDMS

    , Article Korean Journal of Chemical Engineering ; Volume 28, Issue 10 , July , 2011 , Pages 2069-2075 ; 02561115 (ISSN) Jomekian, A ; Mansoori, S. A. A ; Monirimanesh, N ; Shafiee, A ; Sharif University of Technology
    2011
    Abstract
    Mesoporous MCM-48 silica was synthesized by templating method and the structure of particles was characterized by XRD, TEM and N 2 adsorption techniques. The surface modification of particles in order for introducing into PSF matrix was performed by dimethyldichlorosilane (DMDCS) silylation agent. SEM images of as-synthesized and modified MCM-48/PSF MMMs indicate that in the modified MCM-48 silica particles adhered well to the PSF matrix and that the synthesized MMMs were defect free. The incorporation of MCM-48 particles in to the PSF matrix and also surface coating of these MMMs by polydimethylsiloxane (PDMS) were performed. The quality of surface coating was investigated by SEM images and... 

    Fabrication and characterization of a polysulfone-graphene oxide nanocomposite membrane for arsenate rejection from water

    , Article Journal of Environmental Health Science and Engineering ; Volume 13, Issue 1 , 2015 ; 2052336X (ISSN) Rezaee, R ; Nasseri, S ; Mahvi, A. H ; Nabizadeh, R ; Mousavi, S. A ; Rashidi, A ; Jafari, A ; Nazmara, S ; Sharif University of Technology
    BioMed Central Ltd  2015
    Abstract
    Background: Nowadays, study and application of modified membranes for water treatment have been considered significantly. The aim of this study was to prepare and characterize a polysulfone (PSF)/graphene oxide (GO) nanocomposite membrane and to evaluate for arsenate rejection from water. Materials and methods: The nanocomposite PSF/GO membrane was fabricated using wet phase inversion method. The effect of GO on the synthesized membrane morphology and hydrophilicity was studied by using FE-SEM, AFM, contact angle, zeta potential, porosity and pore size tests. The membrane performance was also evaluated in terms of pure water flux and arsenate rejection. Results: ATR-FTIR confirmed the... 

    Synthesis of Nano Porous Mixed Matrix Polymeric Membranes by TIPS Method for Gas Separation Application

    , M.Sc. Thesis Sharif University of Technology Jahanbakhsh Asl, Hannaneh (Author) ; Soltanie, Mohammad (Supervisor)
    Abstract
    Mixed matrix membranes (MMMs) are new generation of membranes which possess simple processability of polymeric membranes and high separation ability of zeolitic membranes. The present study, concentrates on the fabrication of MMM for CO2/CH4 separation in a combined method as encompasses not only higher permeability but also superior selectivity in comparison with conventional polymeric membranes. The most appropriate technique for MMM making, is the process which provides participation of distributed zeolite particles in separation efficiently while the polymeric matrix acts just like a particle support and dose not play an effective role in separation. Investigations demonstrates that... 

    Preparation and Characterization of Mixed-Matrix Composite Membranes Based On Metal-organic Frameworks/Acrylate Polyurethane to Separate Carbon Dioxide from Nitrogen

    , Ph.D. Dissertation Sharif University of Technology Molavi, Hossein (Author) ; Shojaei, Akbar (Supervisor) ; Mousavi, Abbas (Supervisor)
    Abstract
    Composite membranes are one of the promising membranes for overcoming the limitations of conventional membranes in gas separation application by improving the permeability and selectivity. However, it is still very challenging to achieve adhesion interface between the top selective layer and the bottom support layer. The present study demonstrates that this challenge can be overcome appropriately by utilizing a series of adhesive polymer as selective layer to prepare composite membrane. To this end, in the first section a series of acrylate-terminated polyurethanes (APUs) based on poly(ethylene glycol) (PEG) with different molecular weights (Mn) of 600, 1000, 1500, 2000 and 4000 g/mol,... 

    Desulfurization of Middle Distillate Fractions by Membrane Technology

    , M.Sc. Thesis Sharif University of Technology Heydari, Hamid (Author) ; Soltaneih, Mohammad (Supervisor) ; Musavi, Abbas (Supervisor)
    Abstract
    In this study, the pervaporation method was used for desulfurization of gasoline. Thiophene was used as a sulfur agent and n-heptane as a representative of hydrocarbon compounds in gasoline. The composite membranes of the active PDMS layer containing the UiO-66 metal-organic framework nanoparticles are based on porous membrane PVDF. The effect of adding PVP polymer on the porosity of the PVDF membrane has been investigated. Scanning electron microscopy (SEM), Fourier transform infrared spectrum (FTIR) and X-ray diffraction (XRD) have been used to characterize nanoparticles and synthesized membranes. The effect of adding nanoparticles on the membrane performance and its sowelling effect in... 

    Separation of CO2 Using Mixed Matrix Rubbery Membrane

    , M.Sc. Thesis Sharif University of Technology Arbabpour Jannatabadi, Atiyeh (Author) ; Bastani, Dariush (Supervisor) ; Ghadimi, Ali (Supervisor)
    Abstract
    In this study, ZIF-8 was synthesized at room temperature and Then ZIF-8/PEGDA mixed matrix membranes with 5 and 10% of ZIF-8 were prepared by UV photopolymerization to analyze the separation CO2 from natural gas for the first time. The permeation results of gases in mixed matrix membranes in the temperature range of 35-75 degrees centigrade and in pressure ranging from 4-15 bar show the permeability of gases in mixed matrix membranes with 5 and 10% increase more than a pure polymer nearly 14.3 and 31%, respectively, But, CO2=CH4 selectivity decreases. The gas sorption in ZIF-8 was measured in the temperature range up to 75 ◦C and pressure ranging from 2-5 bar. The adsorption isotherm follows... 

    Preparation and Performance Assessment of Polymer-SAPO-34 Mixed Matrix Membrane for Separation of CO2 from Other Gases

    , M.Sc. Thesis Sharif University of Technology Meshkat Alsadat, Shadi (Author) ; Soltanieh, Mohammad (Supervisor) ; Mohammadi, Aliasghar (Supervisor)
    Abstract
    In this research incorporation of SAPO-34 zeolite filler into polycarbonate membrane was investigated for fabrication of mixed matrix membrane (MMM). The main purpose of addition of zeolite in polymer matrix is to enhance the separation properties of pure membrane by means of the selective pores of SAPO-34. SAPO-34 possesses pores with proper size for separation of CO2 from CH4 by molecular sieving mechanism. Pure polycarbonate membrane and PC/SAPO-34 MMM was prepared by solvent evaporation method using dichloromethane as solvent. Zeolite loading was varied between 5-30%wt. First of all, polycarbonate was characterized by DSC, FTIR and viscometer analysis in order to determine all the... 

    Pervaporation of toluene and iso-octane through poly(vinyl alcohol)/graphene oxide nanoplate mixed matrix membranes: Comparison of crosslinked and noncrosslinked membranes

    , Article Journal of Applied Polymer Science ; Volume 135, Issue 7 , 2018 ; 00218995 (ISSN) Khazaei, A ; Mohebbi, V ; Behbahani, R. M ; Ramazani S. A., A ; Sharif University of Technology
    John Wiley and Sons Inc  2018
    Abstract
    Removal of aromatic compounds from fuel is an essential requirement in new environmental policies. In the present study, poly(vinyl alcohol)/graphene oxide (GO) mixed matrix membranes were prepared and applied to the separation of toluene from iso-octane by pervaporation, considering the similarity and interaction between graphene and aromatics. The effects of crosslinking and GO content on separation efficiency have been investigated in detail. Owing to the high affinity of GO with toluene through s and π bonds, the selectivity of the membranes was increased by incorporating a low amount of GO. The results also indicated that noncrosslinked membranes have higher selectivity and permeation... 

    Preparation and characterization of SAPO-34 nanoparticles-mixed matrix membranes (MMM) via combined phase separation method for CO2/CH4 gas separation application

    , Article Technical Proceedings of the NSTI Nanotechnology Conference and Expo, NSTI-Nanotech ; Vol. 1 , 2014 , pp. 253-256 ; ISBN: 9781482258264 Jahanbakhsh Asl, H ; Soltanieh, M ; Azadi, R ; Sharif University of Technology
    Abstract
    Phase separation is one of the common methods for fabrication of polymeric membrane, which classifies into the categories of Thermally Induced Phase Separation (TIPS) and Nonsolvent Induced Phase Separation (NIPS), i.e. heat and mass transfer induced phase separation, respectively. NIPS has been applied more commonly than TIPS, but the membranes which have resulted from this technique have macro finger-like voids, weak mechanical strength and not high separation ability in comparison with the TIPS. In contrast, membranes produced by the TIPS method have micro scale pores, high mechanical strength and also high separation capability, however, polymeric solutions prepared at high temperatures... 

    Development of porous nanocomposite membranes for gas separation by identifying the effective fabrication parameters with Plackett–Burman experimental design

    , Article Journal of Porous Materials ; Volume 23, Issue 5 , 2016 , Pages 1279-1295 ; 13802224 (ISSN) Farrokhnia, M ; Safekordi, A ; Rashidzadeh, M ; Khanbabaei, G ; Akbari Anari, R ; Rahimpour, M ; Sharif University of Technology
    Springer New York LLC  2016
    Abstract
    In this research, Plackett–Burman experimental design was used as a screening method to investigate seven processing factors in the preparation of new polyethersulfone based porous nanocomposite membrane. Polymer concentration, nanoparticle type, nanoparticle concentration, solvent type, solution mixing time, evaporation time, and annealing temperature are variables that were evaluated to fabricate mixed matrix membranes using the evaporation phase inversion method for gas separation. According to obtained results, polymer concentration, nanoparticle concentration, solution mixing time, and evaporation time processing factors had significant effects on gas permeation. In addition, the... 

    Synthesis and Evaluation of Alumina Nanocomposite Membranes for Gas Separation

    , M.Sc. Thesis Sharif University of Technology Farrokhnia, Mohammad Reza (Author) ; Safekordi, Aliakbar (Supervisor) ; Rashidzadeh, Mehdi (Supervisor) ; Khanbabaei, Ghader (Co-Advisor) ; Rahimpour, Mohammad Reza (Co-Advisor)
    Abstract
    Membrane processes are accounted as the newest technology for gas separation and nowadays are more applicable in different petroleum, gas and petrochemical industries because of abundant advantages. One of important application of membrane gas separation technology is syngas adjustment and hydrogen enrichment. In this research, the appropriate alumina nanocomposite membranes for this purpose are prepared and their gas separation performance is investigated. Therefore the mixed matrix membranes, containing the continues polymeric phase polyethersulfone and dispersed phase alumina nanoparticles is synthesized by using methods of experimental design. As the best of our knowledge, there is no... 

    Production of Mixed-Matrix Composite Membranes Based on Metal-Organic Framework/Polyvinylidene Fluoride for Desalination of High Saline Water in Membrane Distillation

    , M.Sc. Thesis Sharif University of Technology Hosseini, Hajar Sadat (Author) ; Bastani, Dariush (Supervisor) ; Mousavi, Abbas (Supervisor)
    Abstract
    In this study, membrane distillation was used for desalination of high saline water. Recently, the synthesis of nanoparticles for the synthesis of membranes for membrane distillation has shown incredible improvement in the morphological properties, flux, and rejection. In this study, by incorporating UiO-66 functionalized with Palmitic acid into PVDF/PEG polymer solution we could improve membranes properties. Functionalization of UiO-66 with Palmitic acid was confirmed with FTIR, XRD, BET, SEM. In the membrane containing 3% Palmitic acid-UiO-66, the flux was increased by 46.5%, resulting in a flux of 12.6 LMH, and the salt rejection was improved from 99.5% to 99.9%. These results confirmed... 

    Poly(vinyl alcohol)/graphene oxide mixed matrix membranes for pervaporation of toluene and isooctane

    , Article Polymer - Plastics Technology and Engineering ; Volume 56, Issue 12 , 2017 , Pages 1286-1294 ; 03602559 (ISSN) Khazaei, A ; Mohebbi, V ; Behbahani, R. M ; Ahmad Ramazani, S. A ; Sharif University of Technology
    Abstract
    Poly(vinyl alcohol)/graphene oxide mixed matrix membranes have been prepared and applied for the pervaporation of isooctane (aliphatic) and toluene (aromatic) mixtures. Characteristics of the membranes such as crystallinity, morphology, and swelling have been investigated, and the results have been used to describe pervaporation performance. Experimental tests evidenced that incorporation of low content of graphene oxide nanoplates (0.5 wt%) in poly(vinyl alcohol) increases affinity of the membrane to aromatics by S and π bonds and selectivity increase to about four times. Moreover, interaction of graphene oxide with toluene results in increasing of swelling and decreasing of permeation... 

    Development of a novel graphene oxide-blended polysulfone mixed matrix membrane with improved hydrophilicity and evaluation of nitrate removal from aqueous solutions

    , Article Chemical Engineering Communications ; 2018 ; 00986445 (ISSN) Rezaee, R ; Nasseri, S ; Mahvi, A. H ; Nabizadeh, R ; Mousavi, S. A ; Maleki, A ; Alimohammadi, M ; Jafari, A ; Hemmati Borji, S ; Sharif University of Technology
    Taylor and Francis Ltd  2018
    Abstract
    In this study, four types of mixed matrix membranes were fabricated using polysulfone (as the base polymer) and different contents of graphene oxide (GO) nanosheets (as modifier) through wet phase inversion method. Based on the amounts of GO (0, 0.5, 1, and 2 wt%), the synthesized membranes named as M1, M2, M3, and M4, respectively. The membranes characteristics were evaluated using FE-SEM, FT-IR, and water contact angle measurements. In addition, the performance of the prepared membranes was investigated in terms of basic parameters: filtrate water flux, nitrate removal efficiency, and antifouling properties. Results showed significant improvements of the characteristics of modified... 

    Energy consumption in pervaporation, conventional and hybrid processes to separate toluene and i-octane

    , Article Chemical Engineering and Processing - Process Intensification ; Volume 128 , June , 2018 , Pages 46-52 ; 02552701 (ISSN) Khazaei, A ; Mohebbi, V ; Mosayyebi Behbahani, R ; Ramazani Saadat Abadi, A ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Chemical industries need to employ new process designs due to environmental policies and energy optimization because of the global energy challenge. Pervaporation has been introduced as a promising alternative for conventional processes such as distillation, known as energy intensive process, in chemical plants. In this work, the energy consumption of different processes for separation of toluene and i-octane (representatives of aromatics and aliphatic mixtures) has been evaluated, based on our previous laboratory pervaporation experiments using Polyvinyl alcohol/Graphene oxide mixed matrix membranes. Accordingly, hybrid distillation-pervaporation and cascade pervaporation systems have been... 

    Development of a novel graphene oxide-blended polysulfone mixed matrix membrane with improved hydrophilicity and evaluation of nitrate removal from aqueous solutions

    , Article Chemical Engineering Communications ; Volume 206, Issue 4 , 2019 , Pages 495-508 ; 00986445 (ISSN) Rezaee, R ; Nasseri, S ; Mahvi, A. H ; Nabizadeh, R ; Mousavi, S. A ; Maleki, A ; Alimohammadi, M ; Jafari, A ; Hemmati Borji, S ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    In this study, four types of mixed matrix membranes were fabricated using polysulfone (as the base polymer) and different contents of graphene oxide (GO) nanosheets (as modifier) through wet phase inversion method. Based on the amounts of GO (0, 0.5, 1, and 2 wt%), the synthesized membranes named as M1, M2, M3, and M4, respectively. The membranes characteristics were evaluated using FE-SEM, FT-IR, and water contact angle measurements. In addition, the performance of the prepared membranes was investigated in terms of basic parameters: filtrate water flux, nitrate removal efficiency, and antifouling properties. Results showed significant improvements of the characteristics of modified... 

    Effect of alumina on the performance and characterization of cross-linked PVA/PEG 600 blended membranes for CO2/N2 separation

    , Article Separation and Purification Technology ; Volume 210 , 2019 , Pages 627-635 ; 13835866 (ISSN) Dilshad, M. R ; Islam, A ; Hamidullah, U ; Jamshaid, F ; Ahmad, A ; Zahid Butt, M. T ; Ijaz, A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this work, poly(vinyl) alcohol (PVA)/poly(ethylene) glycol (PEG) 600 g/mol cross-linked membranes with different alumina (Al2O3) content were synthesized. The membranes were then characterized by FTIR, TGA, DSC, SEM, mechanical strength and permeation properties for carbon dioxide and nitrogen gases at different operating temperatures. The FTIR results confirmed the acetal linkages of cross-linking at 1083 cm−1 and the presence of stretching and bending peaks of Al-O bond at 598 and 444 cm−1, respectively. TGA results showed that the thermal stabilities of the membranes improved with the addition of alumina particles. DSC analysis proved that the glass transition temperature of the... 

    Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications: A review

    , Article Journal of Industrial and Engineering Chemistry ; Volume 19, Issue 2 , 2013 , Pages 375-393 ; 1226086X (ISSN) Bastani, D ; Esmaeili, N ; Asadollahi, M ; Sharif University of Technology
    2013
    Abstract
    Polymeric membrane technology has received extensive attention in the field of gas separation, recently. However, the tradeoff between permeability and selectivity is one of the biggest problems faced by pure polymer membranes, which greatly limits their further application in the chemical and petrochemical industries. To enhance gas separation performances, recent works have focused on improving polymeric membranes selectivity and permeability by fabricating mixed matrix membranes (MMMs). Inorganic zeolite materials distributed in the organic polymer matrix enhance the separation performance of the membranes well beyond the intrinsic properties of the polymer matrix. This concept combines... 

    Fabrication and evaluation of nanocomposite membranes of polyethersulfone/α-alumina for hydrogen separation

    , Article Iranian Polymer Journal (English Edition) ; Volume 24, Issue 3 , 2015 , Pages 171-183 ; 10261265 (ISSN) Farrokhnia, M ; Rashidzadeh, M ; Safekordi, A ; Khanbabaei, G ; Sharif University of Technology
    Springer-Verlag London Ltd  2015
    Abstract
    In this study, polyethersulfone (PES)-based nanocomposite membranes with the incorporation of inorganic filler of α-alumina were prepared via thermal phase inversion method. The fabricated flat sheet-mixed matrix membranes were characterized using X-ray diffraction, thermal gravimetric analysis, differential scanning calorimetry, scanning electron microscopy, and atomic force microscope analysis, and the permeation tests were performed for hydrogen, nitrogen and carbon dioxide. Also prepared α-alumina particles were identified by X-ray diffraction and the surface area, total pore volume and average pore diameter of particles were measured with a high-speed gas-sorption analyzer. The... 

    Mixed Matrix Membrane Preparation for Gas Separation

    , M.Sc. Thesis Sharif University of Technology Rabiee, Hesamoddin (Author) ; Soltanieh, Mohammad (Supervisor) ; Mousavi, Abbas (Supervisor)
    Abstract
    This study has concentrated on preparation of mixed matrix membranes (MMMs) in order to improve the separation performance of the neat poly(amide-12-b-ethylene oxide)(Pebax1074) membrane. Pebax1074 and zeolite SAPO-34 were used to fabricate MMM for the first time. Micro-size SAPO-34 was added to polymer matrix up to 35wt% based on polymer weight; even though at this high loading percentage the prepared membranes were not stable enough to be tested for characterization and gas permeation. The obtained results showed more than 30% increment in CO2 permeability, along with slight growth and reduction in N2 and CH4 permeabilities, respectively for 30wt% zeolite content membranes. Permeability...