Loading...
Search for: mixing-quality
0.013 seconds

    Analyzing mixing quality in a curved centrifugal micromixer through numerical simulation

    , Article Chemical Engineering and Processing: Process Intensification ; 2017 ; 02552701 (ISSN) Shamloo, A ; Vatankhah, P ; Akbari, A ; Sharif University of Technology
    Elsevier B.V 
    Abstract
    The Lab On a CD (LOCD), also known as Centrifugal Microfluidics, has evolved into a sophisticated platform for performing biomedical assays due to its marvelous miniaturization and accurate simulation of biological reactions. Among the numerous applications of the LOCD is fluid mixing. In this paper a centrifugal, serpentine micromixer is simulated and reformed toward better mixing performance. The micromixer was chosen to be curved as a curved design was found to be thrice as functional and compact as a rectilinear design, mixing-wise. The two angular velocity and opening radius parameters were originally hypothesized to affect mixing performance. Effect of angular velocity was studied over... 

    Analyzing mixing quality in a curved centrifugal micromixer through numerical simulation

    , Article Chemical Engineering and Processing: Process Intensification ; Volume 116 , 2017 , Pages 9-16 ; 02552701 (ISSN) Shamloo, A ; Vatankhah, P ; Akbari, A ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    The Lab On a CD (LOCD), also known as Centrifugal Microfluidics, has evolved into a sophisticated platform for performing biomedical assays due to its marvelous miniaturization and accurate simulation of biological reactions. Among the numerous applications of the LOCD is fluid mixing. In this paper a centrifugal, serpentine micromixer is simulated and reformed toward better mixing performance. The micromixer was chosen to be curved as a curved design was found to be thrice as functional and compact as a rectilinear design, mixing-wise. The two angular velocity and opening radius parameters were originally hypothesized to affect mixing performance. Effect of angular velocity was studied over... 

    Numerical simulation of centrifugal serpentine micromixers and analyzing mixing quality parameters

    , Article Chemical Engineering and Processing: Process Intensification ; Volume 104 , 2016 , Pages 243-252 ; 02552701 (ISSN) Shamloo, A ; Madadelahi, M ; Akbari, A ; Sharif University of Technology
    Elsevier, B.V  2016
    Abstract
    Centrifugal microfluidics or the Lab on a CD (LOCD) has developed vast applications in biomedical researches and analyses. Fluid mixing is an application of the LOCD. In this paper, multiple centrifugal micromixers were simulated. Various parameters were originally presumed to have an effect on mixing performance. These parameters include inlet angle, angular velocity, cross-sectional profile, perpendicular length ratio and the number of channels in series. They were each analyzed through simulations. It was gathered that the inlet angle does not significantly affect the mixing quality. Increasing angular velocity steadily increases mixing quality for all geometries. The vertical triangular... 

    Parametric study on mixing process in an in-plane spiral micromixer utilizing chaotic advection

    , Article Analytica Chimica Acta ; Volume 1022 , 2018 , Pages 96-105 ; 00032670 (ISSN) Vatankhah, P ; Shamloo, A ; Sharif University of Technology
    Abstract
    Recent advances in the field of microfabrication have made the application of high-throughput microfluidics feasible. Mixing which is an essential part of any miniaturized standalone system remains the key challenge. This paper proposes a geometrically simple micromixer for efficient mixing for high-throughput microfluidic devices. The proposed micromixer utilizes a curved microchannel (spiral microchannel) to induce chaotic advection and enhance the mixing process. It is shown that the spiral microchannel is more efficient in comparison to a straight microchannel, mixing wise. The pressure drop in the spiral microchannel is only slightly higher than that in the straight microchannel. It is... 

    Enhancing active electro-kinetic micro-mixer efficiency by introducing vertical electrodes and modifying chamber aspect ratio

    , Article Chemical Engineering and Processing - Process Intensification ; Volume 142 , 2019 ; 02552701 (ISSN) Maleki Bagherabadi, K ; Sani, M ; Saidi, M. S ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Micro-mixers are considered as vital components of Micro Total Analysis systems (μTAS). Major objective in the design of micro-mixers is achieving high mixing quality in short mixing times. In this paper, numerical simulation of some micro-mixer designs has been carried out to understand the detailed flow pattern and thereby to propose modifications for improving mixing efficiency. It is well known that inducing convection will provide turbulent like behavior with corresponding mixing enhancement. In micro systems to drive the flow, electro-osmotic force is usually used by introducing electrodes. In this work, mixing electrodes have been implemented to induce convection and eddies. This...